• 제목/요약/키워드: 3 dimensional finite element analysis

검색결과 1,530건 처리시간 0.026초

육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석 (Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element)

  • 최명수;문덕홍
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법 (Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem)

  • 송명관
    • 한국지반신소재학회논문집
    • /
    • 제20권3호
    • /
    • pp.11-20
    • /
    • 2021
  • 본 논문에서는 유한요소법과 경계요소법을 결합하여 기하학적으로 급변 부위가 있는 이차원 탄성 정적 문제에 대하여 효율적이고 정확한 해석 결과를 얻기 위한 유한요소법과 경계요소법의 근사 결합 방법을 제시한다. 이차원 문제의 유한요소로서는 3절점, 4절점 평면응력 요소를 적용하고, 이차원 문제의 경계요소로는 3절점 경계요소를 적용한다. 모델링 단계에서는 우선 전체 해석 대상을 유한요소로 모델링한 후에 기학학적 급변 부위를 경계요소로 모델링 하는데, 유한요소의 모델링을 위하여 정의된 절점을 이용하여 경계요소를 정의한다. 해석 단계에서는 전체 해석 대상에 대하여 유한요소 해석을 우선적으로 수행하고, 이후에 경계요소 해석을 자동으로 수행하는데, 경계부에서의 경계조건은 유한요소 해석 결과인 변위 조건과 응력 조건을 적용한다. 수치예제로서 이차원 탄성 정적 문제인 균열이 있는 평판에 대한 해석 결과를 제시하고 고찰한다.

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

순수 지르코늄의 등통로각압축(ECAP) 공정에 대한 3차원 유한요소해석 (Three Dimensional Finite Element Analysis of ECAP with pure-Zr)

  • 이강무;권기환;채수원;권숙인;김명호;황선근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.661-665
    • /
    • 2002
  • A lot of investigations have been made in recent years on the equal channel angular pressing (ECAP) which produces ultra-fine grains. The finite element method has been used to investigate this issue. In this paper, pure-Zirconium is considered far ECAP process by three dimensional finite element analysis. The effects of fiction on the deformation behavior have been investigated and compared with two dimensional finite element analysis.

  • PDF

유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석 (Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method)

  • 박재학;박상윤
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

개인용 컴퓨터를 이용한 3차원 유한요소 등가곡선 프로그램 개발 (Equi-Value Line Program Development for 3-Dimensional Finite Element Models using Personal Computer)

  • 이석순
    • 한국정밀공학회지
    • /
    • 제9권1호
    • /
    • pp.44-52
    • /
    • 1992
  • A post-processor is developed to be effectively usable in the personal computer. 3-dimensional controur lines are shown on the surface of the finite element model and also on the 3-dimensional cutting plane, using the function linearly interpolated onto the triangular elements which are constructed on the surface or sectional polygons. And these polygons are originated from the finite element model, 3-dimensional model is projected on the plane with hidden line removal by comparision technique[6]. The graphic data file is used to increase the protability of the program. It is easy to use in the other computer system if the graphic routine adopted that computer system is developed. The developed program has wide applications in 3-dimensional finite element analysis.

  • PDF

유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석 (Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach)

  • 윤영묵;김승억;오진우;박정웅
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계 (Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method)

  • 최한호;변상규;강범수
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

층간분리된 복합적층판의 에너지 방출률에 관한 연구 (A Study on the Energy Release Rate of Delaminated Composite Laminates)

  • 정성균
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

$Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가 (Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint)

  • 박영철;오세욱;조용배
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.