• 제목/요약/키워드: 3 dimensional configuration

검색결과 339건 처리시간 0.026초

임플란트 매식조건에 따른 상, 하악골의 응력분포 양상에 대한 3차원 유한요소분석 연구 (EFFECTS OF BONE ENGAGEMENT TYPE&IMPLANT LENGTH ON STRESS DISTRIBUTION: A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS)

  • 최정화;서기열;최주호;한중석
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.687-697
    • /
    • 1999
  • A finite element analysis has been utilized to analyze stress and strain fields and design a new configuration in orthopedics and implant dentistry. Load transfer and stress analysis at implant bone interface are important factors from treatment planning to long term success. Bone configuration and quality are different according te anatomy of expecting implantation site. The purpose of this study was to compare the stress distribution in maxilla and mandible accord-ing to implant length and bone engagement types. A three dimensional axi-symmetric implant model(Nobel Biocare, Gothenburg, Sweden) with surrounding cortical and cancellous bone were designed to analyze the effects of bone engagement and implant length on stress distribution. ANSYS 5.5 finite element program was utilized as an interpreting toot. Three cases of unicortical anchorage model with 7, 10, 13 mm length and four cases of bicortical anchorage model with 5, 7, 10 and 13 mm length were compared both maxillary and mandibular single implant situation. Within the limits of study, following conclusions were drawn. 1. There is a difference in stress distribution according to cortical and cancellous bone thickness and shape. 2. Maximum stress was shown at the top of cortical bone area regardless of bone engagement types. 3. Bicortical engagement showed less stress accumulation when compared to unicortical case overall. 4. Longer the implant future length, less the stress on cortical bone area, however there is no difference in mandibular bicortical engagement case.

  • PDF

3차원 작업공간에서 보행 프리미티브를 이용한 다리형 로봇의 운동 계획 (Motion Planning for Legged Robots Using Locomotion Primitives in the 3D Workspace)

  • 김용태;김한정
    • 로봇학회논문지
    • /
    • 제2권3호
    • /
    • pp.275-281
    • /
    • 2007
  • This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps of the 3D workspace is proposed. A global navigation map is obtained using 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.

  • PDF

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계 (Chine Shape Optimization for Directional Stability at High Angle of Attack)

  • 박형욱;박미영;이재우;변영환
    • 한국항공우주학회지
    • /
    • 제36권9호
    • /
    • pp.825-834
    • /
    • 2008
  • 고 받음각에서의 방향 안정성 향상을 위한 chine 형상 최적화를 수행하였다. Super ellipse equation을 통하여 다양한 형태의 chine 형상을 생성하고, 3차원 Navier-Stokes 방정식을 이용하여 방향안정성 및 고받음각에서의 공력 특성을 분석하였으며, 가장 높은 방향 안정성을 갖는 형상을 기본형상으로 선정하였다. 파리미터를 이용한 기본형상의 곡면 변형을 통하여 높은 방향 안정성 및 양항비를 동시에 만족하는 최적형상 도출을 위하여, 반응면을 구성하고 가중치를 도입하고 양항비를 구속조건으로 하는 방향안정성 최적화 문제를 수행하였다. 본 연구를 통하여 고받음각에서 chine형상의 공력특성을 파악하여 강한 와류를 발생시키는 chine 형상이 방향안정성에 도움이 된다는 것을 확인할 수 있었으며 최적화를 통해 기본형상보다 방향안정성이 약 29% 향상되는 결과를 얻었다. 또한 파라미터 기반 형상 생성기법과 근사최적화 기법의 연동을 이용한 형상최적설계 과정을 초음속, 고받음각 유동의 chine 형상설계에 적용하여 그 효율성을 확인하였다.

유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계 (AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS)

  • 이학민;유재관;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

응력해석에 의한 골절판이 부착된 인체 대퇴골의 골재형성 예측에 관한 연구 (A Study on the Prediction of Bone Remodeling of Plated-Human Femur using Stress Analysis)

  • Kim, Hyun-Su
    • 한국의학물리학회지:의학물리
    • /
    • 제6권2호
    • /
    • pp.111-125
    • /
    • 1995
  • 뼈는 주변 여건에 따라 뼈의 재질 및 형상이 변하는 일종의 동적 구조물로서, 보철물이 부착되면 뼈의 응력상태가 다라져 새로이 골재형성을 하게 된다. 특히, 골절판 부착시 뼈의 접촉은 촉진되나, 그 부위의 응력 변화에 의하여 골절판과 부착된 부분의 뼈는 오히려 약화되는 골다공증 현상을 야기하기도 한다. 본 연구에서는 뼈의 응력변화와 골재형성의 관계를 3차원 유한 요소법을 이용하여 관련시키고자 한다. 이는, 새로이 설계된 골절판 또는 어떤 보철물이, 비록 그 자체의 생체 적합성 및 충분한 강도를 갖게 되더라도 골재형성에 미치는 영향을 판단할 근거가 요구된다고 사료되기 때문이다. 그래서, 현 사용되는 골절판을 인체 대퇴골에 부착된 3차원 유한 요소 모델을 제작하여, 응력 차이법에 의한 골재형성의 경향을 조사하고, 그 경향을 기존 동물 실험결과와 비교 검토하여, 본 연구의 타당성을 평가하여 보철설계의 역학적 기초를 확립하고자 한다.

  • PDF

Multi-Point Aerodynamic Design Optimization of DLR F-6 Wing-Body-Nacelle-Pylon Configuration

  • Saitoh, Takashi;Kim, Hyoungjin;Takenaka, Keizo;Nakahashi, Kazuhiro
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.403-413
    • /
    • 2017
  • Dual-point aerodynamic design optimization is conducted for DLR-F6 wing-body-nacelle-pylon configuration adopting an efficient surface mesh movement method for complex junction geometries. A three-dimensional unstructured Euler solver and its discrete adjoint code are utilized for flow and sensitivity analysis, respectively. Considered design conditions are a low-lift condition and a cruise condition in a transonic regime. Design objective is to minimize drag and reduce shock strength at both flow conditions. Shape deformation is made by variation of the section shapes of inboard wing and pylon, nacelle vertical location and nacelle pitch angle. Hicks-Henne shape functions are employed for deformation of the section shapes of wing and pylon. By the design optimization, drag coefficients were remarkably reduced at both design conditions retaining specified lift coefficient and satisfying other constraints. Two-point design results show mixed features of the one-point design results at low-lift condition and cruise conditions.

비충돌형 인젝터로부터 발생하는 액체추진제 분무의 준3차원 구조 (A Pseudo 3-Dimensional Structure of the Liquid-propellant Spray Emerging from Nonimpinging-type Injector)

  • 정훈;김정수;박정
    • 한국추진공학회지
    • /
    • 제14권6호
    • /
    • pp.17-24
    • /
    • 2010
  • 비충돌형 인젝터로부터 발생하는 액체추진제 분무의 준3차원 구조를 규명하기 위한 연구를 수행하였다. 인젝터 출구 근처에서의 분무 형상을 고속카메라를 사용하여 촬영하였고, 인젝터 분무에서 주기적 흘림현상이 관찰되었다. 또, 이중모드 위상도플러속도계(Dual-mode Phase Doppler Anemometry, DPDA)로 분무특성 매개변수(속도, 직경, 부피유속 등)를 측정하여 인젝터 분무의 공간분포 특성을 파악하였다. 본 실험은 분사압력 17.2~27.6 bar의 조건에서 분사축방향 및 확산방향 거리를 변화시키며 수행하였다.

Effects of Injection Configuration on Mixing in Supersonic Combustor

  • Sakamoto, Hayato;Matsuo, Akiko;Mitani, Tohru
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.48-54
    • /
    • 2004
  • The effects of injector spacing s and injector diameter d on mixing are numerically investigated in supersonic combustor with perpendicular injection behind a backward-facing step. Simulations are reported for airstream Mach number of 2.4. Parameters are changed on following 4 cases to investigate the effects of injector configuration on mixing efficiency $\eta_m$. In the case of varying d or s, dynamic pressure ratio $Rq(=(pu^2)_j/(pu^2)_a)$ is also varied to keep bulk equivalence ratio $\Phi({\oe})Rq.d^2/s)$ constant. (l) Injector spacing s is varied at constant $\Phi$=0.5, 1, 2 for injector diameter d=6mm. In the case of $\Phi$=1, $\eta_m$ has its maximum value at s=24mm. The reason is that increase of $\eta_m$. , by widening spacing at Rq=constant competes with decrease of $\eta_m$ by increasing Rq at s=constant. When spacing is narrow, the flow field of vicinity of injector becomes two-dimensional because adjacent jets interferes each other. By widening spacing, air is easily entrained by three-dimensional effect. This mechanism also appears in the case of $\Phi$=0.5, 2 for d=6mm, and $\eta_m$. reaches its maximum value at s=24mm for $\Phi$=0.5 and at s=42mm for $\Phi$=2. (2) In the case of injector diameter d varied at $\Phi$=1 for s=30mm, $\eta_m$. has its maximum value at d=3mm. The reason is that decrease of $\eta_m$ by increasing injector diameter competes with increase of $\eta_m$ by decreasing Rq at d=constant.(3) In the case of s varied at $\Phi$=0.5, 1,2 for d=3mm, the injector spacing at which mixing efficiency has its maximum value is s= 18mm for $\Phi$=0.5, s=24mm for $\Phi$=1, s=24mm for $\Phi$=2. Therefore it is found that d=3mm and s=24mm can be optimum configuration over a range of $\Phi$=0.5~2.(4) The effect of h on the optimum spacing is investigated. s is varied for d=6mm at step height h=4, 6, 8mm. The simulation results do not show significant change on the step height.

  • PDF

3차원 Acceleration Convex Polytope를 기반으로 한 로봇 손의 안정한 파지 분석 (Analysis on Stable Grasping based on Three-dimensional Acceleration Convex Polytope for Multi-fingered Robot)

  • 장명언;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.99-104
    • /
    • 2009
  • This article describes the analysis of stable grasping for multi-fingered robot. An analysis method of stable grasping, which is based on the three-dimensional acceleration convex polytope, is proposed. This method is derived from combining dynamic equations governing object motion and robot motion, force relationship and acceleration relationship between robot fingers and object's gravity center through contact condition, and constraint equations for satisfying no-slip conditions at every contact points. After mapping no-slip condition to torque space, we derived intersected region of given torque bounds and the mapped region in torque space so that the intersected region in torque space guarantees no excessive torque as well as no-slip at the contact points. The intersected region in torque space is mapped to an acceleration convex polytope corresponding to the maximum acceleration boundaries which can be exerted by the robot fingers under the given individual bounds of each joints torque and without causing slip at the contacts. As will be shown through the analysis and examples, the stable grasping depends on the joint driving torque limits, the posture and the mass of robot fingers, the configuration and the mass of an object, the grasp position, the friction coefficients between the object surface and finger end-effectors.