• Title/Summary/Keyword: 3 Level Converter

Search Result 279, Processing Time 0.023 seconds

New 3-Level Phase-Shift Contorol LLC Converter employing Voltage Doubler Type Rectifier (전압 배가기를 적용한 위상천이 제어 3-레벨 LLC 컨버터)

  • Cho Je-Hyung;Park Ki-Bum;Lee Woo-Jin;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.366-368
    • /
    • 2006
  • The conventional 3-Level LLC Converter using frequency-control has a disadvantage of designing magnetic components. To overcome this problem, a new constant frequency phase-shift controlled three-level LLC converter is proposed. Moreover, by employing voltage doubler type rectifier, an additional resonant capacitor is not needed. Therefore, this converter is promising for the high-power, high-voltage application with simple structure.

  • PDF

A Design of Level Converter with the Increased Acceptable Threshold Voltage Variations of GaAs E/D MESFETs (GaAs E/D MESFET의 염계전압 변동에 강한 레벨 변환회로의 설계)

  • 이창석;윤광준;박형무;마동성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1679-1685
    • /
    • 1989
  • In this paper, a new design of GaAs level converter is proposed, and anlyzed wth the variation of the threshold voltage of E/D MESFETs. The threshold voltage ranges analyzed are -0.05V to 0.35V for enhancement type MESFETs and -0.3V to -0.7V for depletion type MESFETs. In this range, the variation of the input characteristics of the conventional level converter designed to convert the level of DCFL using Vss of -0.8V to that of -0.2V, is greather than 600mV, but of the level converter proposed here is less than 100mV.

  • PDF

High-Efficiency and High-Power-Density 3-Level LLC Resonant Converter (고효율 및 고전력밀도 3-레벨 LLC 공진형 컨버터)

  • Gu, Hyun-Su;Kim, Hyo-Hoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.153-160
    • /
    • 2018
  • Recent trends in high-power-density applications have highlighted the importance of designing power converters with high-frequency operation. However, conventional LLC resonant converters present limitations in terms of high-frequency driving due to switching losses during the turn-off period. Switching losses are caused by the overlap of the voltage and current during this period, and can be decreased by reducing the switch voltage. In turn, the switch voltage can be reduced through a series connection of four switches, and additional circuitry is essential for balancing the voltage of each switch. In this work, a three-level LLC resonant converter that can operate at high frequency is proposed by reducing switch losses and balancing the voltages of all switches with only one capacitor. The voltage-balancing principle of the proposed circuit can be extended to n-level converters, which further reduces the switch voltage stress. As a result, the proposed circuit is applicable to high-input applications. To confirm the validity of the proposed circuit, theoretical analysis and experimental verification results from a 350 W-rated prototype are presented.

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

A New Interleaved Double-Input Three-Level Boost Converter

  • Chen, Jianfei;Hou, Shiying;Sun, Tao;Deng, Fujin;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.925-935
    • /
    • 2016
  • This paper proposes a new interleaved double-input three-level Boost (DITLB) converter, which is composed of two boost converters indirectly in series. Thus, a high voltage gain, together with a low component stress and a small input current ripple due to the interleaved control scheme, is achieved. The operating principle of the DITLB converter under the individual supplying power (ISP) and simultaneous supplying power (SSP) mode is analyzed. In addition, closed-loop control strategies composed of a voltage-current loop and a voltage-balance loop, have been researched to make the converter operate steadily and to alleviate the neutral-point imbalance issue. Experimental results verify correctness and feasibility of the proposed topology and control strategies.

Performance of Multi-level Inverter for High-Speed SR Drive (SRM의 고속운전을 위한 새로운 멀티레벨 인버터의 구동특성)

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • In this paper, a novel multi-level inverter for low cost high speed switched reluctance(SR) drive is proposed. The proposed multi-level converter has reduced number of power switches and diodes than that of a conventional asymmetric converter for SRM and smaller voltage rating of the dump capacitor comparing with energy efficient c-dump converter. It can supply five operating modes that is boosted, DC-link, zero, negative bias and negative boosted voltage. The proposed multi-level converter has fast excitation and demagnetization modes of phase current, so dynamic response can be achieved. The proposed multi-level converter is verified by computer simulation and experimental results.

A Novel Ripple-Reduced DC-DC Converter

  • Tao, Yu;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.396-402
    • /
    • 2009
  • A DC/DC converter generally needs to work under high switching frequency when used as an adjustable power supply to reduce the size of magnetic elements such as inductors, transformers and capacitors, but with the rising of the switch frequency, the switch losses will increase and the efficiency will reduce. Recently, to solve these problems, research is actively being done on a soft switching method that can be applied under high frequency and on a PWM converter that can be applied under low frequency such as a multi-level topology. In this paper a novel DC-DC conversion method for reducing the ripple of output voltage is proposed. In the proposed converter, buck converters are connected in series to generate the output voltage. By using this method, the ripple of output voltage can be reduced compared to a conventional buck converter. Particularly when output voltage is low, the number of acting switching elements is less and the result of ripple reduction is more obvious. It is expected that the converter proposed in this paper could be very useful in the case of wide-range output voltage.

Design of Single-Stage AC/DC Converter with High Efficiency and High Power Factor for Low Power Level Applications

  • Lee, Jun-Young;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.123-131
    • /
    • 1997
  • Design of single stage AC/DC converter with high power factor for low power level applications is proposed. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulations. This converter also has a high efficiency by employing an active clamp method and synchronous rectifiers. To verify the performances of the proposed converter, a 90W-converter has been designed. The modelling of this proposed converter is power formed using an averaging technique and based on this model a detailed analysis is carried out. This prototype meets the IEC555-2 requirements satisfactorily with nearly unity power factor and high efficiency.

  • PDF

Comparative Analysis of Efficiency and Power Density of Single-Phase and 3-Level Boost Converters for PV System (태양광 시스템용 단상 및 3-레벨 부스트 컨버터의 효율 및 전력밀도 비교 분석)

  • Kim, Chul-Min;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, single-phase and three-level boost converters applied to the photovoltaic system were compared and analyzed in terms of efficiency and power density according to the input voltage and load conditions. For accurate analysis of efficiency, the losses in each device of the single-phase and three-level boost converters were derived using mathematical equations and simulations by using the PSIM thermal module. Then, the losses were compared with the efficiency confirmed through the actual experiments. Results confirmed that the efficiency and power density can be improved by applying the three-level boost converter to the system according to the selection of the switching frequency.