• Title/Summary/Keyword: 3 D.O.F. Motor

Search Result 20, Processing Time 0.037 seconds

Dynamic Analysis and Control of the 3 Degrees of Freedom Motor (3자유도 모터의 동역학적 해석 및 제어)

  • 강규원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.341-345
    • /
    • 1996
  • Many mechanical and electrocal systems use the number of motors to make multi degree of freedom motion. One method to reduce the number of motors is suggested by using the 3 D.O.F. motor. The 3 D.O.F. motor has advantages such as downsize, weight reduction, and simplification of the existing 3 D.O.F. systems. In this study, a mathematical model for the 3 D.O.F. motor is suggested and the dynamic equation is derived to analyze the 3 D.O.F. motion. Generallinear control methods are very hard to get the good performance because of the nonlinear terms of each degree of each degree of freedom. To control the motion properly, the nonlinear terms are decoupled using a feedback control law. Nonlinear feedback control law which can arrage the poles arbitrarily is derived. The effects of the gains are examined through computer simulations.

  • PDF

Design and Control of 3 D.O.F. Spherical Actuator Using the Magnetic Force of the Electromagnets (전자석의 자기력 제어를 이용한 구형 3 자유도 액추에이터의 설계 및 제어)

  • Baek, Yun-Su;Yang, Chang-Il;Park, Jun-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1341-1349
    • /
    • 2001
  • In this paper, 3 D.O.F. actuator, which has three degrees of freedom in one joint, is proposed. The proposed 3 D.O.F. spherical actuator is composed of the rotor and atator. The upper plate of the stator supports the rotor and five electromagnets are located at the base of the stator. The rotor has two permanent magnets, and each rotational axis of the rotor gimbal system is supported by the bearing. To find out the governing equations for the torque generation, Coulombs law and Lorentz force with respect to magnetism is applied. As the experimental results, if the distance between electromagnet and permanent maget is far enough, the force between these magnets can be expressed from current of coils and z-axial distance. For the purpose of control 3 D.O.F. actuator, PID control law is applied. The experimental results are presented to show the validity of the proposed 3 D.O.F. actuator.

Design Consideration of Back-EMF Constant for 3-D.O.F. Spherical PM Motor

  • Go, Sung-Chul;Kang, Dong-Woo;Im, Jong-Bin;Lee, Ju;Won, Sung-Hong;Lim, Seung-Bin
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.78-84
    • /
    • 2010
  • A 3-D.O.F. spherical PM motor has 3 degrees of freedom in its motion by tilting and rotating of a shaft, which can be applied in a range of fields. The back-EMF is proportional to the field flux and angular velocity. The back-EMF constant in conventional rotating machine has a uniform value. However, in a spherical PM motor, the back-EMF constant of the coils varies according to the tilting conditions regardless of whether the angular speed is constant. Consideration of the back-EMF constant is useful for designing 3-D.O.F. spherical PM motors. In this study, the back-EMF constant of the spherical PM motor was considered carefully.

A Study of the Iron-Core Solenoid Analysis for 3 D.O.F. Motor Control with Experimental Method (3자유도 모터 제어를 위한 철심 솔레노이드 특성의 실험적 해석에 관한 연구)

  • Baek, Yoon-Su;Park, Joon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1334-1340
    • /
    • 2001
  • In this paper, the experimental modeling of the force between permanent magnet and iron-core solenoid is suggested for more accurate control of 3 D.O.F. motor using the electromagnetic force. In the case of iron-core solenoid, the general equation of solenoid cant be used simply because of its nonlinearity. Therefore, the magnetic flux density is estimated through the concept of equivalent permanent magnet. The force distribution between permanent magnet and iron-core solenoid is more dependent on the magnetization of iron core caused by the permanent magnet than any other parameters. Therefore, the equation of the force estimation between these magnetic systems can be modeled by the experimental function of the magnetization of iron core. Especially, if the distance between iron-core solenoid and permanent magnet is far enough, the force equation through experiment can be expressed from only the current of coil and the distance between iron-core solenoid and permanent magnet. It means that Coulombs law can be used for magnetic systems and it is validated through the experiment. Therefore, force calibration is performed by the concept of Coulombs law.

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

A Study on Holding Torque Improvement of Three-Degree Of freedom Spherical Motor (3-자유도 구형모터의 홀딩토크 개선 연구)

  • Kang, Dong-Woo;Won, Sung-Hong;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1667-1672
    • /
    • 2009
  • The spherical motor is an electric machine which is able to tilt its shaft on 3-dimensional space as using electromagnetic force. Recently a permanent magnet is remarkable material for applying electric machinery, because of high magnetic flux density. In this paper, a spherical motor, which has permanent magnet on its rotor, is researched. As known, the spherical motor has a special feature as 3 degrees of freedom (D.O.F) operation. This performance can be realized by using electromagnetic torque between coils and magnets. Therefore, in this paper, a permanent magnet spherical wheel motor is introduced and performance characteristics are analyzed for improving of operation stability.

  • PDF

Development of a New 5 DOF Mobile Robot Arm and its Motion Control System

  • Choi Hyeung-Sik;Lee Chang-Man;Chun Chang-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1159-1168
    • /
    • 2006
  • In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers w ε re developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the openGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.

A remote control robot manipulator using force feedback joystick (로봇 매니퓰레이터 원격 제어)

  • Kim, In-Soo;Hyun, Woong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1823-1824
    • /
    • 2008
  • We propose a remote controlled robot manipulator using force feedback joystick. User can control easily 5 d.o.f robot manipulator in 3 demensional space using general joystick. A force sensor attached in developed gripper sends signal to main robot controller so as to know gripper grasp the object. The signal also sent to user through force feedback joystick. We designed a dexterous 5 d.o.f robot manipulator analysis the kinematics and inverse kinematics. The robot was simply developed using serial RC motor. As a main robot controller, we use 32bit MPU(AT91SAM7256) and micro C/OS. To show the validity of our developed robot, a several experiments were demonstrated.

  • PDF

A Study on Improving Performance Characteristic of Multi-D.O.F Spherical Wheel Motor (다자유도 모터의 구동특성 개선을 위한 연구)

  • Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.6-8
    • /
    • 2008
  • Electrical machineries have been developed as following with various and high technical application in these days. Especially the robot is integrated system including mechanical structure, electronic control, and electrical technology. The robot system is not compact and has not natural motion like human, although the technology of robot has been developing continuously. The spherical wheel motor is useful electric machine for using robot joint as operation of 3-degrees of freedom. In this paper, a permanent magnet spherical wheel motor is introduced and performance characteristics are analyzed for improving of operation stability.

  • PDF