• Title/Summary/Keyword: 3 차원 복원

Search Result 615, Processing Time 0.03 seconds

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

The Information Diffusion Neural Networks for Real-Time Regeneration of 3-D Terrain Elevation Data with Contour Information (등고선 정보로부터 3차원 지형정보의 실시간 복원을 위한 정보 확산 신경회로망)

  • Kim, J.M.;Choi, J.S.;Lim, Y.J.;Kim, H.G.;Kim, H.S.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.968-970
    • /
    • 1995
  • The Information Diffusion Neural Networks is proposed to regenerate the 3-dimensional terrain elevation data from contour lines. Contours in paper map are an expression of terrain elevation in highly compressed form. A real time regeneration of terrain data for each grid points from the the contour information is required for various applications. In the proposed neural networks, the elevation information on contours is diffused to neighbor units through updating its output toward that of neighbor units. An interpolation of terrain information is achieved from such computation mechanithm. Terrain data regeneration simulation has been done with sampled terrain data on contour lines.

  • PDF

Automatic Local Update of Triangular Mesh Models Based on Measurement Point Clouds (측정된 점데이터 기반 삼각형망 곡면 메쉬 모델의 국부적 자동 수정)

  • Woo, Hyuck-Je;Lee, Jong-Dae;Lee, Kwan-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.335-343
    • /
    • 2006
  • Design changes for an original surface model are frequently required in a manufacturing area: for example, when the physical parts are modified or when the parts are partially manufactured from analogous shapes. In this case, an efficient 3D model updating method by locally adding scan data for the modified area is highly desirable. For this purpose, this paper presents a new procedure to update an initial model that is composed of combinatorial triangular facets based on a set of locally added point data. The initial surface model is first created from the initial point set by Tight Cocone, which is a water-tight surface reconstructor; and then the point cloud data for the updates is locally added onto the initial model maintaining the same coordinate system. In order to update the initial model, the special region on the initial surface that needs to be updated is recognized through the detection of the overlapping area between the initial model and the boundary of the newly added point cloud. After that, the initial surface model is eventually updated to the final output by replacing the recognized region with the newly added point cloud. The proposed method has been implemented and tested with several examples. This algorithm will be practically useful to modify the surface model with physical part changes and free-form surface design.

2-D/3-D Seismic Data Acquisition and Quality Control for Gas Hydrate Exploration in the Ulleung Basin (울릉분지 가스하이드레이트 2/3차원 탄성파 탐사자료 취득 및 품질관리)

  • Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • To identify the potential area of gas hydrate in the Ulleung Basin, 2-D and 3-D seismic surveys using R/V Tamhae II were conducted in 2005 and 2006. Seismic survey equipment consisted of navigation system, recording system, streamer cable and air-gun source. For reliable velocity analysis in a deep sea area where water depths are mostly greater than 1,000 m and the target depth is up to about 500 msec interval below the seafloor, 3-km-long streamer and 1,035 $in^3$ tuned air-gun array were used. During the survey, a suite of quality control operations including source signature analysis, 2-D brute stack, RMS noise analysis and FK analysis were performed. The source signature was calculated to verify its conformity to quality specification and the gun dropout test was carried out to examine signature changes due to a single air gun's failure. From the online quality analysis, we could conclude that the overall data quality was very good even though some seismic data were affected by swell noise, parity error, spike noise and current rip noise. Especially, by checking the result of data quality enhancement using FK filtering and missing trace restoration technique for the 3-D seismic data inevitably contaminated with current rip noises, the acquired data were accepted and the field survey could be conducted continuously. Even in survey areas where the acquired data would be unsuitable for quality specification, the marine seismic survey efficiency could be improved by showing the possibility of noise suppression through onboard data processing.

Analysis of a Target's Power-Spill Patterns Using Squint SAR Images (Squint SAR 영상 내 목표물 분산전력패턴 분석기법)

  • Hwang, Ji-Hwan;Kim, Duk-Jin;Lee, Seung-Chul;Han, Seung-Hoon;Cho, Jae-Hyoung;Moon, Hyoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.722-730
    • /
    • 2018
  • This paper presents an analysis technique for estimating the properties of a target's power-spill patterns observed in reconstructed SAR images, which in turn depend on the setup squint angle of the FMCW signal-based SAR system. The target responses observed in the reconstructed SAR images were affected by the range-direction and azimuth-direction of a wave projected on the ground, and the obtained results were analyzed by applying three-dimensional squinted SAR geometry. Furthermore, the rotation patterns were verified through simulations based on the FMCW signal model and back-projection algorithm. This paper summarizes the obtained evaluation results as a function of SAR geometry and squint angle.

3D Modeling from 2D Stereo Image using 2-Step Hybrid Method (2단계 하이브리드 방법을 이용한 2D 스테레오 영상의 3D 모델링)

  • No, Yun-Hyang;Go, Byeong-Cheol;Byeon, Hye-Ran;Yu, Ji-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.7
    • /
    • pp.501-510
    • /
    • 2001
  • Generally, it is essential to estimate exact disparity for the 3D modeling from stereo images. Because existing methods calculate disparities from a whole image, they require too much cimputational time and bring about the mismatching problem. In this article, using the characteristic that the disparity vectors in stereo images are distributed not equally in a whole image but only exist about the background and obhect, we do a wavelet transformation on stereo images and estimate coarse disparity fields from the reduced lowpass field using area-based method at first-step. From these coarse disparity vectors, we generate disparity histogram and then separate object from background area using it. Afterwards, we restore only object area to the original image and estimate dense and accurate disparity by our two-step pixel-based method which does not use pixel brightness but use second gradient. We also extract feature points from the separated object area and estimate depth information by applying disparity vectors and camera parameters. Finally, we generate 3D model using both feature points and their z coordinates. By using our proposed, we can considerably reduce the computation time and estimate the precise disparity through the additional pixel-based method using LOG filter. Furthermore, our proposed foreground/background method can solve the mismatching problem of existing Delaunay triangulation and generate accurate 3D model.

  • PDF

Analysis on Tension Response of Mooring Line by Lateral Excitation (수평가진에 의한 계류라인의 장력응답 해석)

  • Jung Dong Ho;Kim Hyeon Ju;Moon Deok Su;Park Han Il;Choi Hak Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • A mooring system can be applied to keep the position of a floating structures. In this study, the structural analysis is carried out to analyze the dynamic characteristics of a mooring line for a floating breakwater. A three-dimensional equations of motion for a submerged chain are derived. Bending stiffness is considered for the necessary restoring force in the regions of zero tension. A fortran program is to be developed by employing finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. The results of simulation show good agreement in tension response pattern with the experimental results of a reference. The results of this study can contribute for the design of mooring system for a floating breakwater.

  • PDF

A Study of Monitoring in Slopes of High Collapse Risk Using Terrestrial LiDAR (지상 LiDAR를 이용한 위험관리사면의 변위 모니터링)

  • Park, Jae-Kook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.45-52
    • /
    • 2010
  • One of the ways to minimize damage by a slope collapse is to set up preventive measures in advance by measuring displacements in a slope and predicting a collapse. There have been many different technologies developed to predict a collapse with diverse measuring equipment. Especially recently, attempts have been made to utilize terrestrial LiDAR, a high-tech imaging equipment to measure displacements on a scope. Terrestrial LiDAR generates three-dimensional information about an object with millimeter-level accuracy from hundreds of meters away and has been used in an array of fields including restoration of cultural assets, three-dimensional modeling, and making of topographic maps. In recent years, it has been used to measure displacements in structure as well. This study monitored displacements in slopes of high collapse risk with terrestrial LiDAR. As a result, it was able to confirm the applicability of terrestrial LiDAR to the field, and proposed monitoring methods.

Motion Capture using both Human Structural Characteristic and Inverse Kinematics (인체의 구조적 특성과 역운동학을 이용한 모션 캡처)

  • Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.20-32
    • /
    • 2010
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.

Phase Unwrapping using Modified Goldstein Algorithm in Digital Holography (디지털 홀로그래피에서의 수정된 골드스타인 알고리즘을 이용한 위상펼침)

  • Yoon, Seon-Kyu;Cho, Hyung-Jun;Kim, Doo-Cheol;Yu, Young-Hun;Kim, Sung-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.122-129
    • /
    • 2007
  • Generally, many kinds of phase unwrapping algorithm are used to obtain three-dimensional features in digital holography. The Goldstein algorithm is ra epresentative method. which requires small memory capacity and short execution time fer an unwrapping process. However, the Goldstein algorithm has some problems when the dipole residue is located at the boundary. When the opposite residues are located at the boundary and the distance between the opposite residues is longer than the boundary, an incorrect branch cut occurs and results in incorrect calculation. We have modified the Goldstein algorithm to solve the incorrect calculation problem using boundary information. We found that the modified Goldstein algorithm could resolve the Goldstein algorithm's problem.