• Title/Summary/Keyword: 3 차원 간극 요소

Search Result 27, Processing Time 0.024 seconds

Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model (3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석)

  • Kang, Chang Hak;Lee, Sung Uk;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • A fuel assembly consists of fuel rods composed of pellets (UO2) and a cladding tube (Zircaloy). The role of the fuel rods in the reactor is to generate heat by nuclear fission, as well as to retain fission products during operation. A simulation method using a computer program was used to evaluate the safety of the nuclear fuel rods. This computer program has been called the fuel performance code. In the analysis of a light water reactor fuel rod, the gap conductance, which depended on the distance between the pellets and cladding tube, mainly influenced the thermomechanical behavior of the fuel rod. In this work, a 3D gap element was proposed to simulate the thermo-mechanical behavior of the nuclear fuel rod, considering the gap conductance. To implement the proposed 3D gap element, a 3D thermo-mechanical module was also developed using FORTRAN90. The asymmetric characteristics of the nuclear fuel rod, such as the MPS (missing pellet surface) and eccentricity, were simulated to evaluate the proposed 3D gap element.

Elastic Wave Velocity of Jumunjin Sand Influenced by Saturation, Void Ratio and Stress (포화도, 간극비 및 응력에 따른 주문진사의 탄성파 속도)

  • Lee, Jung-Hwoon;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The penetration testing provides 1 dimensional profiles of properties applicable to limited investigation areas, although N-value has been linked to a wide range of geotechnical design parameters based on empirical correlations. The nondestructive test using elastic waves is able to produce 2 or 3 dimensional property maps by inversion process with high efficiency in time and cost. As both N-value and elastic wave velocities share common dominant factors that include void ratio, degree of saturation, and in-situ effective stress, the correlation between the two properties has been empirically proposed by previous studies to assess engineering properties. This study presents the experimentally measured elastic wave velocities of Jumunjin sands under at-rest lateral displacement condition with varying the initial void ratio and degree of saturation. Results show that the stress condition predominantly influences the wave velocities whereas void ratio and saturation determine the stress-velocity tendency. The correlation among the dominant factors is proposed by multiple regression analysis with the discussion of relative impacts on parameters.

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction (3차원 유한요소를 이용한 핵연료와 피복관 기계적 거동 해석)

  • Seo, Sang Kyu;Lee, Sung Uk;Lee, Eun Ho;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.437-447
    • /
    • 2016
  • In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results.

Investigation on Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 통한 터널굴착과 지하수의 상호작용 고찰)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.33-46
    • /
    • 2004
  • This paper presents the effect of groundwater on tunnel excavation. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled finite-element analysis. Based on the results the interaction mechanism between the tunnelling and groundwater is identified for cases having different lining permeabilities. Examined items include pore pressures around lining and lining stresses. Face deformation behavior as well as ground surface movement patterns was also examined. Besides, the effect of grouting pattern was investigated. The results indicated that the effect of groundwater on tunnel excavation increases lining stresses as well as ground movements, and that the tunnel excavation and groundwater interaction can only be captured through a fully coupled analysis. Implementations of the findings from this study are discussed in great detail.

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.

Finite Element Analysis based on the Macroelement Method for the Design of Vacuum Consolidation (진공압밀공법 설계를 위한 Macro-element법 기반 유한요소해석)

  • Kim, Hayoung;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.29-37
    • /
    • 2022
  • A three-dimensional analysis is required to interpret the drainage behavior of an improved ground with vertical drains, and the macroelement method enables efficient interpretation considering the three-dimensional drainage effect of vertical drains under two-dimensional plane strain condition. In this study, a novel finite element analysis program was developed by applying the macroelement method to the vacuum consolidation method used in ground improvement practice. The conventional macroelement method was used to calculate the amount of drainage from the vertical drain by setting the excess porewater pressure in the drainage material to zero; however, the program developed in this study was improved to consider negative excess porewater pressure as an actual vacuum consolidation condition. To verify the performance of the program, because of a comparison with the measurement values at the site where the vacuum consolidation method was applied, results predicted by the program and field measurement data showed similar settlement behavior.

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.

3D coupled analysis on tunneling under groundwater (지하수가 터널굴착에 미치는 영향에 관한 3차원 연계해석)

  • Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.175-187
    • /
    • 2003
  • This paper presents the effect of groundwater on tunnel performance. Fundamental issues in tunneling under high groundwater table together with an illustrative example are discussed. The effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled finite-element analysis. The results of the 3D coupled analysis were then compared with those of a total stress analysis. Examined items included earth and pore pressures around lining, and lining stresses. Also the examined include face movement and ground surface movements. The results indicated that the effect of groundwater on tunnel excavation can only be captured through a fully coupled analysis. Implementations of the findings from this study are discussed in great detail.

  • PDF

Finite Element Modeling of Geogrid-Encased Stone Column in Soft Ground (연약지반에 시공된 지오그리드 보강 쇄석기둥 공법의 유한요소모델링)

  • Yoo, Chung-Sik;Song, Ah-Ran;Kim, Sun-Bin;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.133-150
    • /
    • 2007
  • This paper presents the results of a research performed to investigate the finite element modeling approach for GESC (Geogrid-Encased Stone Column) method in soft ground within the framework of stress-pore pressure coupled analysis. GESC reinforcement mechanism and construction method was first examined and model verification of stone column on the results of FE analysis was identified. The results indicate that the 3D FE analysis and membrane elements play the most important role in the soft groung using GESC. Based on the results, a modeling method was suggested for stress-pore pressure coupled finite element modelling of GESC in soft ground.