• Title/Summary/Keyword: 3 점 굽힘 시험

Search Result 101, Processing Time 0.021 seconds

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures (나노허니컴 구조물의 인장 및 굽힘 물성 측정)

  • Jeon, Ji-Hoon;Choi, Duk-Hyun;Lee, Pyung-Soo;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.23-31
    • /
    • 2006
  • We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

A study on the forming condition of a bone plate made of a glass/polypropylene composite (Twintex) (유리섬유/폴리프로필렌 복합재료 (Twintex)를 이용한 고정판 성형조건에 관한 연구)

  • Park, Seok-Won;Yoo, Seong-Hwan;Lee, Jae-Eung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.55-60
    • /
    • 2010
  • In this paper, tensile and bending tests of glass/polypropylene composite (Twintex) specimens fabricated by various forming conditions were carried out and the results were compared according to the forming conditions to find the appropriate condition for the forming composite bone plates. From the tests it was found that the most appropriate forming conditions were $230^{\circ}C$, 3MPa. Composite bone plates were formed using this condition by two different fabricating methods for screw holes: one was a net shape molding and the other was drilling. The forming and bending tests revealed that the drilling process provided much better bending stiffness of bone plates. This paper provided the most appropriate condition for forming composite bone plates and this result was also expected to offer informative data on forming of other Twintex structures.

A Study on Comparison of Acoustic Emission, Ultrasonic Testing and Crack Gauge Method in 3-point Bending Testing (3점 굽힘시험에 있어서 AE, 초음파, 크랙게이지법의 비교연구)

  • Han, E.K.;Kim, K.S.;Park, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 1990
  • Comparison of acoustic emission, ultrasonic testing and crack gauge in 3-point bending testing have been studied. As the results, COD is indirectly assumed by strain gauge rate and grid pitch width when crack gauge grid is out. Acoustic emission is qualitatively able to measure crack growth by total count but ultrasonic testing has a difficulty in measuring it because of echo height fluctuation according to the change and pressure of UT. probe.

  • PDF

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

Measurement of Stress Intensity Factor Using Strain Gage Methods (스트레인게이지법을 이용한 응력확대계수 측정)

  • 김재훈;문순일;이현철;김덕희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • Strain gage method is investigated to evaluate the mode I stress intensity factor. Two types of specimens for CT and three point bend specimen are used. Sharp notch of specimens is manufactured by wiring discharge machining. Strain gages signal from the crack tip region are used to calculate stress intensity factors. The results are compared with those of the ASTM E399 method and finite element analysis. The present experimental results coincide well with the data obtained from finite element analysis. Attached position of strain gage should be seriously considered during the application of this method.

  • PDF

Study on the Development of the Digital Image Correlation Measurements Program for Measuring the 3-Point Bending Test (이미지 상관법을 이용한 3 점 굽힘 시험 계측 프로그램 개발 관한 연구)

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Ko, Kwang Su;Kim, Sung Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.889-895
    • /
    • 2014
  • Machine parts and structures of a change in the displacement and strain can be evaluated safety is one of the important factors. Typically the strain gauge has been employed to measure the displacement and strain. However, this contact-type measurement method has disadvantages that are not measured under condition of specific object shape, surface roughness and temperature. In particularly, 3 point bending and 4 point bending test not use strain gauge. So its test used cross head displacement and deflect meter. Digital Image Correlation measurement methods have many advantages. It is non contact-type measurement method to measure the object displacements and strain. In addition, it is possible to measure the Map of full field displacements and strain. In this paper, measured the 3 point bending deflection using the Digital Image Correlation methods. In order to secure the reliability, Digital Image Correlation method and universal test machine were compared.

The Effects of Welding Clearance and bending moment on Spot Weldability (점용접 간극과 굽힘 모멘트가 용접성에 미치는 영향)

  • Lim, Jae-Kyoo;Song, Jun-Hee;Kuk, Jung-Ha;Yang, Seung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • The automobile is made up of thousands of parts. Some parts are formed by pressing and combined by spot welding. To find weldability conditions of spot welding, clearance between two welding plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a steel plate of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two specimens was changed 0mm, 3mm and 5mm and distance from vise to measure influence of bending moment 25mm, 45mm, 65mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear. The much bending moment and crosshead speed are the much tensile shear load is.

  • PDF

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

알루미나에서 강도에 미치는 마모의 영향

  • 박성길;허용학;조성재
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.11a
    • /
    • pp.36-40
    • /
    • 1990
  • 세라믹재료는 ductility가 작아 그 강도가 균열의 가혹성, 즉 크기와 모양에 의하여 결정되는 특징을 가지고 있다. 한편 마모는 표면에 균열을 생성시킬 수 있기 때문에 강도에 큰 영향을 미칠 수 있다. 그러나 지금까지 강도에 미치는 마모의 영향은 잘 밝혀져 있지 않다. 따라서 본 연구에서는 세라믹재료중에서도 물리적 성질들이 잘 알려져 있는 알루미나를 택하여 마모기구를 관찰하고 마모가 강도에 미치는 영향을 관찰하였다. 소결후 고온등방가압 처리된 알루미나 소결체를 입수하여 3mmX4mmX40mm크기의 굽힘시험시편으로 가공하였다. 두개의 4mmX40mm면중에서 한명을 diamond paste $1\mu m$까지 사용하여 polishing하였다. 시편의 polishing된 면위에 질화규소 볼을 올려 놓고, 하중을 가한 상태에서 볼을 와복운동시켰다. 시편위에 형성되는 마모흔적의 길이를 16mm이상이 되도록 하였다. 왕복속도는 약 2 헤르쯔도 하였다. 하중은 300, 600, 900N으로 하였다. 윤활유로는 paraffin oil을 사용하였다. 마모시험이 끝난 시편을 광학현미경 및 주사전자현미경으로 관찰한 후, 4-점굽힘시험하여 강도를 구하였다. 4-점굽힘시험시 외부 및 내부 지지점간의 거리는 30mm, 10mm로 하였으며, cross head speed는 분당 0.5mm로 하였다.

  • PDF