• 제목/요약/키워드: 3차원 PIV

검색결과 76건 처리시간 0.025초

표준화상을 이용한 2차원 PIV와 3차원 PIV계측 및 성능비교검정 (Performance Test of 2-Dimensional PIV and 3-Dimensional PIV using Standard Images)

  • 도덕희;황태규;송주석;백태실;편용범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.646-651
    • /
    • 2003
  • Quantitative performance test on the conventional 2D-PIV and the hybrid angular 3D-PIV (Stereoscopic PIV) was carried out. LES Data sets on an impinging jet which are provided on the webpage(http://www.vsj.or.jp/piv) for the PIV Standard Project were used for the generation of virtual images. The generated virtual images were used for the 2D-PIV and 3D-PIV measurements. The measurement results showed that the results obtained by 2D-PIV on average values are closer to the LES data than those obtained by 3D-PIV, but the turbulent properties obtained by 2D-PIV are largely underestimated than those obtained by 3D-PIV.

  • PDF

표준영상을 이용한 2차원 PIV와 3차원 PIV 성능시험 (Performance Test on 2-Dimensional PIV and 3-Dimensional PIV Using Standard Images)

  • 황태규;도덕희
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1315-1321
    • /
    • 2004
  • Quantitative performance test on the conventional 2D-PIV and the hybrid angular 3D-PIV(Stereoscopic PIV) was carried out. LES Data sets on an impinging jet which are provided on the webpage(http://www.vsj.or.jp/piv) for the PIV Standard Project were used for the generation of virtual images. The generated virtual images were used for the 2D-PIV and 3D-PIV measurements test. It has been shown that the results obtained by 2D-PIV on average values are slightly closer to the LES data than those obtained by 3D-PIV, but the turbulent properties obtained by 2D-PIV are largely underestimated than those obtained by 3D-PIV.

고해상도 3차원 상호상관 PIV 알고리듬 개발 (Development of High-resolution 3-D PIV Algorithm by Cross-correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.410-416
    • /
    • 2001
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity field of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. In this study, stereo photogrammetty was applied for the 3-D matching of tracer particles. Epipolar line was used to decect the stereo pair. 3-D CFD data was used to estimate algorithm. 3-D position data of the first frame and the second frame was used to find velocity vector. Continuity equation was applied to extract error vector. The algorithm result involved error vecotor of about 0.13 %. In Pentium III 450MHz processor, the calculation time of cross-correlation for 1500 particles needed about 1 minute.

  • PDF

스테레오 PIV (Stereoscopic PIV)

  • 도덕희;이원제;조경래;편용범;김동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.394-399
    • /
    • 2001
  • A new stereoscopic PIV is introduced. The system works with CCD cameras, stereoscopic photogrammetry, and a 3D-PTV principle. Virtual images are produced for the construction of a benchmark testing tool of PIV techniques. The arrangement of the two cameras is based on angular position. The calibration of cameras and the pair-matching of the three-dimensional velocity vectors are based on 3D-PTV technique.

  • PDF

3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구 (Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method)

  • 김채형;정인석;최병일;토시노리 코오치;고로 마쓰야
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.378-385
    • /
    • 2012
  • 벤트 혼합기는 혼합기 후류에 존재하는 재순환 영역으로 공기를 유입시켜 연료-공기 혼합을 증대시키는 혼합기이다. Stereoscopic PIV기법을 통해 얻은 3차원 속도, 와류, 난류운동에너지를 토대로 계단형 혼합기를 기본 모델로 하여 벤트 혼합기의 성능을 분석하였다. 벤트 혼합기는 두터운 전단층으로 인해 높은 침투거리를 보였으며, 난류운동에너지는 주로 주유동과 제트유동의 경계면을 따라 분포하였다. 이 난류 영역은 혼합영역 내에서 활발히 물질전달을 일으키며, 혼합 증대를 가져온다.

  • PDF

해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용 (Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

3차원 Volume PIV의 개발 (Development of 3-D Volume PIV)

  • 최장운;남구만;이영호;김미영
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정 (Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method)

  • 윤상열;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.690-695
    • /
    • 2001
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space with a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D, volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

  • PDF

스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정 (Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method)

  • 윤상열;김경천
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.773-780
    • /
    • 2003
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space and a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D. volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

3차원 스테레오 PIV 개발 (Development of 3-D Stereo PIV)

  • 김미영;최장운;남구만;이영호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.19-22
    • /
    • 2002
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of a section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of oblique-angled image to transformed image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis of a section field of 3-D flow, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

  • PDF