• Title/Summary/Keyword: 3차원 토모그래피

Search Result 53, Processing Time 0.02 seconds

A Field Application of 3D Seismic Traveltime Tomography (I) - Constitution of 3D Seismic Traveltime Tomography Algorithm - (3차원 탄성파 토모그래피의 현장 적용 (1) - 3차원 토모그래피 알고리즘의 구성 -)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.202-213
    • /
    • 2008
  • In this study, theoretical approach of 3D seismic traveltime tomography was investigated. To guarantee the successful field application of 3D tomography, appropriate control of problem associated with blind zone is pre-requisite. To overcome the velocity distortion of the reconstructed tomogram due to insufficient source-receiver array coverage, the algorithm of 3D seismic traveltime tomography based on the Fresnel volume was developed as a technique of ray-path broadening. For the successful reconstruction of velocity cube, 3D traveltime algorithm was explored and employed on the basis of 2nd order Fast Marching Method(FMM), resulting in improvement of precision and accuracy. To prove the validity and field application of this algorithm, two numerical experiments were performed for globular and layered models. The algorithm was also found to be successfully applicable to field data.

A Field Application of 3D Seismic Traveltime Tomography (II);Application of 3D Seismic Traveltime Tomography to a dam-planned area (3차원 탄성파 토모그래피의 현장 적용 (II);댐 예정지에서의 3차원 토모그래피 적용 사례)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • 3D seismic tomography technique was assessed for applicability of developed 3D tomography algorithm based on Fresnel volume in the dam-planned area. Reconstructed 3D tomogram based on Fresnel volume and Fast Marching Method(FMM) reveals similar velocity structure to the other geotechnical survey results. With the correlation analysis between RMR data and seismic velocity information, it could provide reliable information of rock mass rate. The applicability of 3D seismic tomography was verified in this study. It would be expected to apply 3D tomography with new developed first arrival calculation and inversion algorithm to the engineering field economically.

3D Seismic Travel-time Tomography using Fresnel Volume (프레넬 볼륨을 이용한 3차원 탄성파 주시 토모그래피)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • 3D seismic travel-time tomography algorithm baled on Fresnel volume was developed and its feasibility was investigated by the numerical experiments. To testify the field applicability of the developed algorithm, frequency characteristics and way coverage of the crossholel seismic raw data were investigated and 3D velocity tomogram cube with about 8m spatial resolution was obtained. When compared this 3D velocity cube with the conventional 2D ray tomogram, two results were matched well. We concluded that 3D seismic tomography algorithm developed in this study has enough potential to the field application.

Imaging of Fractures and Tunnel by 3-D ERT (전기비저항 토모그래피에 의한 파쇄대 및 터널의 3차원 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2008
  • ERT imaging, especially 3-D method, is a very powerful means to obtain a very high resolution image of the subsurface for geotechnical or hydrogeological problems. In this paper, we introduce two examples of successful case histories, where the imaging targets were three-dimensional. First example is the case of 3-D fracture imaging for hydrogeologic application. In this example, the borehole deviation was a critical problem in the ERT imaging and we could obtain real 3-D attitude of fracture system by including the borehole deviation in the inversion. In the second case, we did field experiment to image the empty tunnel with the size of $2m{\times}2m$ and the target was very clearly imaged in 3-D space. In these examples, we could show that 3-D ERT imaging is a very powerful tool for the 3-D subsurface imaging and the method can provide enhanced imaging capabilities especially for the 3-D targets such as fractures and cavities or tunnel.

Three-dimensional Imaging of Subsurface Structures by Resistivity Tomography (전기비저항 토모그래피에 의한 지하구조의 3차원 영상화)

  • Yi Myeong-Jong;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.236-249
    • /
    • 2002
  • We have extended the three-dimensional (3-D) resistivity imaging algorithm to cover the 3-D resistivity tomography problem, where resistivity data are acquired using electrodes installed in several boreholes as well as at the earth surface. The imaging algorithm consists of the 3-D finite element forward modeling and least-squares inversion scheme, where the ACB (Active Constraint Balancing) is adopted to enhance the resolving power of the inversion. Sensitivity analysis with numerical verifications shows that 3-D resistivity tomography is a very appealing method and can be used to get 3-D attitude of subsurface structures with very high-resolution. Moreover, we could accurately handle the topography effect, which could cause artifacts in the resistivity tomography. In the application of 3-D resistivity tomography to the real field data set acquired at the quarry mine, we could derive a very reasonable and accurate image of the subsurface.

Analysis of Density Distribution for Hydrogen Flow Using Three-dimensional Digital Speckle Tomography (3차원 디지털 스페클 토모그래피를 이용한 수소 유동의 밀도 분포 분석)

  • Ahn, S.S.;Ko, H.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • 석유 연료 고갈 해결 및 온실 효과 가스 배풀 저감을 위한 방안으로 제시되는 수소는 다양한 에너지 저장체로 사용되어 질 수 있으나 안전성에 대한 연구가 요구되어진다. 따라서, 일반적인 저장 형태인 고압 저장 탱크에서 누출이 되었을 경우 분사되는 수소의 거동에 대한 연구가 이루어져야하며 이를 바탕으로 한 보완책이 제시되어야 한다. 이번 연구에서는 누설 시 확산되는 수소의 밀도를 실제 거동과 유사한 3차원 컴퓨터 영상장으로 합성한 후 ART(algebraic reconstruction technique) 및 MART(multiplicative ART)를 기반으로 한 3차원 디지털 스페클 토모그래피 기법을 개발하여 재건하고 분석하였다.

EM Tomography by Extended Born Approximations (확장된 Born 근사에 의한 EM 토모그래피)

  • Cho In-Ky;Sim Hyun-Mi
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.155-160
    • /
    • 1998
  • EM tomography technique has been developed. The algorithm used the extended Born approximations for forward modeling and reconstructed a conductivity image by a smoothness constraint least squares inversion method. Observed data, the vertical components of secondary magnetic fields, were simulated with the 3-D integral equation code. The results showed that the location of anomalous body could be imaged very well, but conductivity of the body was lower than real one and the vertical resolution was much higher than the horizontal resolution.

  • PDF