• Title/Summary/Keyword: 3차원 탄소성 유한요소해석

Search Result 50, Processing Time 0.03 seconds

고강도 알루미늄 7175 합금 링롤재의 급냉 및 응력제거처리후 잔류응력 유한요소해석 및 측정

  • 박성한;구송회;이방업;은일상
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.181-187
    • /
    • 1997
  • 고강도 알루미늄 합금 링롤재의 급냉, 링 팽창(expansion) 및 링 압축(compression) 응력제거처리후 잔류응력을 예측하기 위하여 2차원 축대칭 열해석 및 탄소성 해석을 수행하였다. 급냉 및 응력제거처리 후 2단 과시효 처리(T73)된 링롤재에 대하여 3단계 절단법(Three step sectioning method)을 적용하여 링롤재의 두께에 따른 잔류응력 분포를 측정하였으며, 측정결과를 급냉 및 응력제거처리후 잔류응력 해석결과와 비교분석하였다. 링의 급냉후 원주 및 축방향의 잔류응력 해석값은 T73후 측정값과 비슷한 경향을 보였으며, 링의 내면과 외면에서 압축응력을 나타내었고 중심에서 인장응력을 나타내었다. 잔류응력은 링 팽창(T7351) 및 링 압축(T7352) 적용후 T73에 비해 현저히 감소하였으며, 축방향의 제거 효과가 원주방향보다 우수하게 나타났다. 또한 링 압축에 의한 제거효과가 링 팽창보다 크게 나타났다. 링롤재의 응력제거처리는 제거 효과 및 실용성 측면에서 링 압축 공정이 유리하며, 치수제어 및 장비용량 측면에서 링 팽창 공정이 유리하다는 결론을 얻었다.

  • PDF

Development of 3D Sheet Metal Forming Analysis Program by explicit finite element method (외연적 탄소성 유한요소법에 의한 3차원 박판금속 성형해석 프로그램 개발)

  • 정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.217-221
    • /
    • 1997
  • In this study, 3D sheet metal forming analysis program is developed by explicit finite element method. In this program, analysis flow just follows the real engineering process to provide the user intuitive understanding and smooth contact alorithm improves the accuracy of stress prediction. The capability of this program are demonstrated by various examples.

  • PDF

A study on the process for precision forming by 3-dimension bending machine (3 차원 벤딩 머신에서 정밀 성형을 위한 공정 개발에 관한 연구)

  • Kim H.J.;Lim S.H.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1897-1900
    • /
    • 2005
  • The purpose of this study is to investigate the bending process for manufacturing of sound pipe by 3 dimension bending machine. The arbitrarily-bended pipe is widely used in a heat exchanger system. The pipe should be formed precisely for assembling of heat changer. And, spring back effect and variation of the pipe thickness should be controlled effectively. We described the change of spring back amount and thickness variation of the pipe according to the change of bending radius and bending angle by FEM analysis. The analysis is adopted the elasic-plastic analysis and contact analysis on MARC software.

  • PDF

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Behavior of girth-welded buried steel pipes under external pressure (원주 용접된 압력 매설강관의 거동 분석)

  • Jeon, Juntai;Lee, Chinhyung;Chang, Kyongho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents finite element (FE) analyses to clarify the effects of external pressure on the residual stresses in a girth-welded steel pipe. At first, FE simulation of the girth welding process is carried out to obtain the weld-induced residual stresses employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Then, 3-D elastic-plastic FE analyses incorporating the residual stresses and plastic strains obtained from the preceding FE simulation are performed to investigate the residual stress behavior in the girth-welded pipe under external pressure. The FE analysis results show that the hoop compressive stresses induced by the external pressure significantly alter the hoop residual stresses in the course of the mechanical loading.

3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction (3차원 유한요소를 이용한 핵연료와 피복관 기계적 거동 해석)

  • Seo, Sang Kyu;Lee, Sung Uk;Lee, Eun Ho;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.437-447
    • /
    • 2016
  • In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results.

Three Dimensional Behavior or Square Footing and Bnlined Solt Ground Tunnel (정방형 기초와 Unlined Soft Ground터널의 3차원적 거동)

  • 유충식
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-110
    • /
    • 1994
  • Interaction between an unlined tunnel may cause a serious stability both the tunnel and the overlying and unli Red tunnel interaction meta study on the three dimensional bets a three dimensional elasto plastic the program, a wide range of blur puter analysis such as stress distr menu and tunnel deformation were footing and unlined tunnel. The yes traces the ultimate bearing capacity only on the tunnel size and location revealed is that an unlined tunnel under a square footing is subjected to three dimensional stress pattern along the tunnel axis, and that the magnitudes of stresses in the foundation soil and around tunnel perimeter are considerably smaller when loaded with a square than with a strip footings and the difference varies with the location and the type of stress. It is also revealed that the footing failure mechanism varies with the degree of footing and tunnel interaction.

  • PDF

An Analytical Study on Moment Response of Welded Steel Pipe for Loading Rate (재학속도에 따른 용접강관의 모멘트 응답특성에 관한 해석적 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This article aims to analytically research for influence of residual stresses on bending moment responses against welded steel pipes subjected to quasi -static or dynamic loadings. The residual stresses of the welded steel pipe are computed by three-dimensional welding simulation. The bending moment responses of the welded and seamless steel pipes are determined by using three-dimensional dynamic elastoplastic FE analysis as a function of loading rate. It is seen from analytical results that the welded steel pipe shows lower moment response comparing to the seamless steel pipe, and moment difference between seamless and welded steel pipes tends to decrease as loading rate increases.

Analysis of Mechanical Behavior of Existing Tunnel by the Construction of Shaft Nearby (근접한 수직구 건설에 따른 기존 터널의 역학적 거동 분석)

  • 이석원;조만섭;이성원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.109-122
    • /
    • 2003
  • In order to release the pressure fluctuations and micro-pressure wave induced by the entering of train into the small cross sectional tunnel, it has been reported that the construction of air shaft has more advantages with respect to economy and constructability than the enlargement of cross section of existing tunnel. The field monitorings and analytical studies were conducted simultaneously in this study to analyze the mechanical behavior of existing railway tunnel, new cross tunnel and new shaft by the construction of new shaft nearby. The results showed that the minimum distance from existing tunnel to new shaft which secures the stability of existing tunnel was found to be half diameter of existing tunnel. On the three dimensional mechanical behavior of existing tunnel by the construction of new shaft, the results from the analytical study and field monitoring had a similar trend. The analytical study and field monitoring results, however, produced somewhat different results on the mechanical behavior of new shaft itself. These conclusions induce that the analytical method which has been applied on the analyses of horizontal tunnel could not be applied in the same way on the analysis of vertical shaft.