• Title/Summary/Keyword: 3차원 좌표측정기

Search Result 41, Processing Time 0.029 seconds

A Study on the Ball-Bar Artifact for the Volumetric Error Calibration of Machine Tools (Machine Tools 공간오차 분석을 위한 Bal1-bar Artifact 연구)

  • Lee, Eung-Suk;Koo, Sang-Seo;Park, Dal-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.986-991
    • /
    • 2004
  • For volumetric error measurement and calibration for machine tools, manufacturing machine or coordinate measuring machine (CMM), are studied using a Ball-bar artifact. A design of the Ball-bar is suggested manufactured by Invar, which is a low thermal expansion material, and precision steel balls. The uncertainty for the artifact method is discussed. A method of the Ball-bar artifact for obtaining 3-D position errors in CMM is proposed. The method of error vector measurement is shown using the Ball-bar artifact. Finally, the volumetric error is calculated from the error vectors and it can be used for Pitch error compensation in conventional NC machine and 3-D position Error map for calibration of NC machine tools.

Precision Evaluation Method for the Positioning Error of Three-DOF Parallel Mechanism using Coordinate Measuring Machine (CMM) (CMM을 이용한 3자유도 병렬기구 위치 오차의 정밀 평가 기법)

  • 권기환;박재준;이일규;조남규;양현익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.99-109
    • /
    • 2004
  • This paper proposes precision evaluation method for the positioning error of three-DOF translational parallel mechanism. The proposed method uses conventional CMM as metrology equipment to measure the position of end-effector. In order to obtain accurate measurement data from CMM, the transform relationship between the coordinate system of the parallel mechanism and the CMM coordinate system must be identified. For this purpose, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate error components at any arbitrary position of the end-effector is derived. In addition, mathematical fitting models to represent the position error components in the two-dimensional workspace of the parallel mechanism are also constructed based on response surface methodology. The proposed error evaluation method proves its effectiveness through the experimental results and its application to real three-DOF parallel mechanism.

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

Touch-Trigger Probe Error Compensation in a Machining Center (공작기계용 접촉식 측정 프로브의 프로빙 오차 보상에 관한 연구)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.661-667
    • /
    • 2011
  • Kinematic contact trigger probes are widely used for feature inspection and measurement on coordinate measurement machines (CMMs) and computer numerically controlled (CNC) machine tools. Recently, the probing accuracy has become one of the most important factors in the improvement of product quality, as the accuracy of such machining centers and measuring machines is increasing. Although high-accuracy probes using strain gauge can achieve this requirement, in this paper we study the universal economic kinematic contact probe to prove its probing mechanism and errors, and to try to make the best use of its performance. Stylus-ball-radius and center-alignment errors are proved, and the probing error mechanism on the 3D measuring coordinate is analyzed using numerical expressions. Macro algorithms are developed for the compensation of these errors, and actual tests and verifications are performed with a kinematic contact trigger probe and reference sphere on a CNC machine tool.

Volumetric Error Calibration of NC Machine Tools using a Hole-Plate Artifact (Hole-Plate를 이용한 NC공작기계의 공간 오차 측정 및 분석)

  • Park, Dal-Geun;Lee, Enug-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • A method of the volumetric error measurement and calibration of NC machine tools is studied using an artifact method. In this study, a hole-pate is designed and machined using stainless steel. We tested and applied the hole-plate artifact in a commercial CMM(Coordinate Measuring Machine), after calibration of the hole-plate using a precise CMM. It has been shown that not only the measurement of geometric error components but also the 2D length error calculation in a working volume is available using the hole-pate artifact method. The results of study can also be used in NC machine with touch probe as the same method in CMM.

A Study on the Minimum Zone Algorithm for the Calculation of Roundness (진원도 계산을 위한 Minimum Zone 알고리즘 연구)

  • 이응석;김종길;신양기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.156-161
    • /
    • 2000
  • Least Squares and Minimum Zone method are known for obtaining a datum or a continuous approximate function of measured data. This study is for a Minimum Zone algorithm for a circle, which is useful to obtain the exact roundness from the reference circle of measured data. The proposed method is compared with the Least Squares Limacon method and Chrystal-Peirce algorithm. A computational algorithm for the Minimum Zone circle is suggested and results in less roundness than the other two methods. This Minimum Zone circle method will be used for other geometrical measured data, such as plane or sphere for obtaining the exact flatness or sphericity.

  • PDF

An Accurate Extrinsic Calibration of Laser Range Finder and Vision Camera Using 3D Edges of Multiple Planes (다중 평면의 3차원 모서리를 이용한 레이저 거리센서 및 카메라의 정밀 보정)

  • Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • For data fusion of laser range finder (LRF) and vision camera, accurate calibration of external parameters which describe relative pose between two sensors is necessary. This paper proposes a new calibration method which can acquires more accurate external parameters between a LRF and a vision camera compared to other existing methods. The main motivation of the proposed method is that any corner data of a known 3D structure which is acquired by the LRF should be projected on a straight line in the camera image. To satisfy such constraint, we propose a 3D geometric model and a numerical solution to minimize the energy function of the model. In addition, we describe the implementation steps of the data acquisition of LRF and camera images which are necessary in accurate calibration results. In the experiment results, it is shown that the performance of the proposed method are better in terms of accuracy compared to other conventional methods.

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

A Development of Ship Block Leveling System based on the Axiomatic Design (공리적 설계 기반 선체 블록 레벨링 시스템 개발)

  • Noh, Jackyou;Lim, Nam-Won;Oh, Jung-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper the independence axiom, one of two principal axioms of axiomatic design theory, is applied to the leveling system development as an design criteria. After functional requirements and corresponding design parameters constitute an initial design matrix for the leveling system, sequence, which is compatible with the independence axiom, of the design parameters of the design matrix is determined and independent components of block leveling system are revealed. As a result of axiomatic design, system configuration related to the design sequence is developed. In order to verify and validate the developed block leveling system, test with real hull block leveling work in site by using total station which is used to acquire three dimensional coordinate of target point is performed. Comparison with measured data and output data from the block leveling system shows the system accuracy is under 1 mm so that the developed system is verified and validated to be used in site.

A Study on the Improvement of Performance Testing System of Domestic Surveying Equipment (국내 측량장비 성능검사제도 개선방안 연구)

  • MIN, Kwan-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • In this paper, we proposed the improvements for performance test and surveying equipment regulations, standards, methods and procedures, depending on the need of improving the legal system for surveying equipment in a diverse and sophisticated surveying industry. This research was performed first investigating the existing legal systems(Act on the establishment and management of spatial data, Framework act on national standards, ISO 17123, JIS B 7912) with respect to the surveying equipment performance testing and the research for IOS and KOLAS suggested the improvements on the application for the surveying equipment performance testing standard. More exactly, first, two years were presented for the surveying equipment performance testing cycle considering the precise accuracy of the instrument stability, purpose and frequency of use, etc. Second, the abolition of the measurement distance by grade and the upward or cross-grade adjustment of the single prism standards about the light wave rangefinder and total station were suggested for the improvement on survey equipment performance criteria. Third, since the main function of total station is focused on a three-dimensional coordinate measurement due to the improvement of surveying equipment performance testing, it was proposed to use the precision(repeatability) of the coordinate measuring method as an evaluation method.