• Title/Summary/Keyword: 3차원 기하구조

Search Result 243, Processing Time 0.024 seconds

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

Cognitive Evaluation of Geometrical Structure on Express Highway with Driving Simulator (차량시뮬레이터를 이용한 고속도로 복합선형구간에서의 운전자 감성평가)

  • 이병주;박민수;이범수;남궁문
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.91-101
    • /
    • 2003
  • This study modeled 4-lane highway in three-dimensional virtual reality in order to overcome difficulties of field experiment. and the research subject was placed in a driving simulator. We survey the driver's cognitive characteristics to the alignment changes in the three-dimensional virtual reality highway. Especially, maximizing the identity of driving movements and virtual scenery on the basis of the data obtained by dynamic analysis module. we minimized simulator sickness for the graphic module of driving simulator. And we carried out cognitive evaluation on the basis of adjective words extracted by dictionary and the opinion of specialist. In this study LISREL model was used to detect the causal relation between geometry and safety in cognitive side, and found that geometric change affects the safety of drivers by static and dynamic road safety model in three-dimensional combined alignments. As the result, for constructing safety road. we consider drivers' cognitive characteristics as human factors in road design, and we think that they are very important factors to improve road safety.

Design Route Analysis of Dangerous Road for Traffic Accident using GIS (GIS를 이용한 사고 위험도로의 설계노선 분석)

  • Lee, Kye-Dong;Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.591-598
    • /
    • 2008
  • Recently, the government has improvement projects of dangerous road for the site that has very high accident rate due to bad geometric structures of the road. Although, route selecting of the road is a basic and important process, but the process of route selecting must consider the technical, safety and environment factor together. Also, the technology for the 3-dimensional terrain model can be used as an important factor in planning and designing for selecting alternative route projects. In the course of experimenting with the 3-dimensional topography generated by the combination of the digital map and drawing of route, the technology as been developed to offer the multi-dimensional access to the potential construction sites from the nearby main roads. This 3-dimensional digital elevation model has made it possible to make various terrain analysis base on GIS, which provides real-time virtual access to the designated construction sites for development planning and construction projects. Therefore, this study presents a reasonable plan for route selecting from some alternative routes through subjective evaluation and classify the methods linked basic design of road construction.

Extracting Building Geometry for Structural Analysis from IFC Physical File (IFC 파일로부터 구조해석을 위한 형상모델의 구축)

  • Goh, IL-Du;Choi, Joong-Hyun;Kim, E-Doo;Jeong, Yeon-Suk;Lee, Jae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.601-604
    • /
    • 2010
  • 기하형상이나 엔지니어링에 관한 정보를 3차원 모델기반으로 다루는 BIM기술은 기존의 2차원 도면작업들에 비해 업무의 효율성이나 신속성, 비용측면 등에서 많은 이점을 제공할 수 있어 건축계획 및 설계, 엔지니어링, 시공, 유지관리, 에너지분석 등 건설산업의 전 분야에 활용되고 있다. 본 논문은 BIM용 프로그램들간에 정보교환을 위해 사용되는 건물의 국제표준 정보모델인 IFC 파일로부터 구조해석을 위한 건물형상모델을 자동으로 구축하기 위한 방법을 제시하고, 실제 구현한 프로그램으로 적용사례를 보여준다.

  • PDF

Application of Multi-Resolution Modeling in Collaborative Design (협업 설계에서의 다중해상도 모델링 응용)

  • Kim, Tae-Seong;Han, Jung-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.339-346
    • /
    • 2003
  • This paper provides a framework for information assurance within collaborative design, based on a technique we call role-based viewing. Such role-based viewing is achieved through integration of multi-resolution geometry and security models. 3D models are geometrically partitioned, and the partitioning is used to create multi-resolution mesh hierarchies. Extracting a model suitable for access rights for individual designers within a collaborative design environment Is driven by an elaborate access control mechanism. 

3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System (지반-골조구조물 상호작용계의 3차원 정.동적 해석)

  • 서상근;장병순
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-254
    • /
    • 1997
  • When dynamic loads such as mechanical load, wind load, and seismic load, which causing a vibration, acts on the body of the 3-D framework resting on soil foundation, it is required to consider the dynamic behavior of soil-space framework interation system. Thus, this study presents the 3-dimensional soil-interaction system analyzed by finite element method using 4-node plate elements with flexibility, 2-node beam elements, and 8-node brick elements for the purpose of idealizing an actual structure into a geometric shape. The objective of this study is the formulation of the equation for a dynamic motion and the development of the finite element program which can analyze the dynamic behavior of soil-space framework interaction system.

  • PDF

Development of Standard of Highway Curve Geometric Considering 3-D Acceleration (3차원 가속도를 고려한 도로곡선부 유형별 설계기준 제시)

  • Park, Jung-Ha;Park, Je-Jin;Park, Tae-Hoon;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.247-255
    • /
    • 2008
  • According to "A guide Book to Highway Design", most road elements are chosen based on a certain design speed in order to ensure obtaining safe and smooth traffic operating. However, road safety in practical way is corelative to not only all element of roads but also road shape, for example, between straight line and curves line and between curved lines. Also, it is relates to alignments such as horizontal alignment, vertical alignment, and cross section. That is, the practical road design should be examined in both sides of 3 dimension and consecutiveness as the practical road is a 3-dimensional successive object. The paper presents a concept for acceleration to evaluate consistency of road considering actual road shape on 3-dimension. Acceleration of vehicle is influential to road consistency based on running state of vehicle and state of drivers. Especially, the magnitude of acceleration is a quite influential element to drivers. Based on above, the acceleration on each point 3-D road can be calculated and then displacement can be done. Computation of acceleration means total calculation on each axis.

  • PDF

Parametric Modeling and Numerical Simulation of 3-D Woven Materials (3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석)

  • Sim, Kichan;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.331-338
    • /
    • 2020
  • In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.

A Constrained Self-Calibration Technique (제약 조건을 적용한 셀프 캘리브레이션 방법)

  • Kim, Seong-Yong;Han, Jun-Hui
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.4
    • /
    • pp.358-368
    • /
    • 2001
  • 셀프 캘리브레이션은 영상 시퀀스에 대한 특징점 정합 결과를 이용하여 카메라 내부 파라미터를 계산하는 기법이다. 이는 임의로 움직이는 카메라를 이용하여 얻은 영상 시퀀스를 이용하여 유클리디안 복원을 수행하는데 응용될 수 있다. 안정적인 3차원 복원결과를 얻기 위하여 본 논문에서는 두 가지 제약 조건을 사용한다(카메라 내부 파라미터의 개수에 대한 제약 조건과 복원할 장면의 기하학적 구조를 이용한 제약 조건). 카메라 내부 파라미터에 대한 제약 조건은 카메라의 하드웨어적인 특성을 반영하며 이러한 제약 조건을 적용함으로써 셀프 캘리브레이션 중 비선형 최적화 과정의 수렴도를 높일 수 있다. 또, 기하학적 제약 조건은 대상 장면의 직각 구조를 이용하여 이에 대한 조건을 분석하여 제약 조건에 대한 수식을 유도한 다음 이를 최적화 과정에 포함시킨다. 합성 영상과 다양한 종류의 실제 영상에 대한 실험을 통하여 본 논문에서 제안된 방법을 이용하면 개선된 유클리디안 복원 결과를 얻을 수 있음을 보인다.

  • PDF

Efficient 3D Geometric Structure Inference and Modeling for Tensor Voting based Region Segmentation (효과적인 3차원 기하학적 구조 추정 및 모델링을 위한 텐서 보팅 기반 영역 분할)

  • Kim, Sang-Kyoon;Park, Soon-Young;Park, Jong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.10-17
    • /
    • 2012
  • In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. In this paper, we propose a method for creating 3D virtual scenes based on 2D image that is completely automatic and requires only a single scene as input data. The proposed method is similar to the creation of a pop-up illustration in a children's book. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting to an image segmentation. The tensor voting is used based on the fact that homogeneous region in an image is usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. And then, our algorithm labels regions of the input image into coarse categories: "ground", "sky", and "vertical". These labels are then used to "cut and fold" the image into a pop-up model using a set of simple assumptions. The experimental results show that our method successfully segments coarse regions in many complex natural scene images and can create a 3D pop-up model to infer the structure information based on the segmented region information.