• Title/Summary/Keyword: 3차원 거푸집

Search Result 12, Processing Time 0.019 seconds

Surface Characteristics of Concrete According to Types of Formworks (거푸집 종류에 따른 콘크리트 표면 특성)

  • Park, Se-Eon;Choi, Jeong-Il;Lee, Bong-Kee;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.499-505
    • /
    • 2021
  • The purpose of this study is to investigate experimentally the physical/chemical properties of concrete surface according to types of formworks. Plywood formwork and coated plywood formwork were prepared. In addition, plywood formwork with sand paper was prepared to simulate deterioration of concrete or rough surface of concrete. Normal concrete was used in this study. The properties of concrete surface were investigated by visual inspection, scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques, elemental mapping, 2D and 3D surface profile measurement, and zeta potential measurement. Test results showed that concrete in a coated formwork had smooth surface and concrete in the formwork with sand paper had rough surface. It was observed that properties of concrete surface depended on types of formworks. Furthermore, differences in surface roughness were significantly higher than those in chemical compositions and zeta potential.

Design and Constructability Improvement of 3D Concrete Formworks through Analysis of Construction Applications (3차원 콘크리트 거푸집의 설계 및 시공성 개선)

  • Park, Seong-Jun;Dong, Ngoc Son;Kang, Hwirang;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Aesthetic design guidelines of bridges were developed in many countries. As iconic structures, bridges need to be attractive and durable as they serve many generations. In this paper, a new design process of concrete structures considering 3D shapes and texture was proposed. The 3D design needs to consider function, economy, advanced technology, tradition and local culture. 3D printers enable the combination of artistic design and engineering design for concrete structures. Parametric modeling with iconic design was utilized to produce 3D formworks. As a pilot project, a railway bridge girder was designed and the proposed technologies were applied. Detail requirements to improve constructability and quality of concrete surfaces were derived. From the pilot applications, design guidelines were suggested.

The case study of BIM-based quantity take-off for concrete and formwork (BIM 기반 물량산출 자동화를 위한 콘크리트와 거푸집 공사의 사례분석)

  • Jun, Ki-Hyun;Yun, Seok-Heon
    • Journal of KIBIM
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • Currently, a lot of design, engineering and construction companies has been interested in BIM(Building Information Modeling) technologies for higher productivity and efficiency. The information provided from BIM can be mostly used for automated quantity takeoff. But BIM has some problems for fully automated quantity takeoff to solve. The purpose of this study is to show the problems and suggest solutions through case study, especially with concrete and form work.

A Study on the Development of 3D Software for Automated Formwork Design (거푸집 자동화 설계를 위한 3차원 기반 소프트웨어 개발에 관한 연구)

  • Lee, Bo-Kyeong;Lee, Tae-Hoon;Kim, Jin-Sung;Lee, Dong-Eun;Choi, Hyeong-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.112-113
    • /
    • 2019
  • In this study, development of 3D software for automated formwork design was conducted to achieve optimization and reduction of labor for temporary work. Through the literature review, the current technical level was identified and the required functions of 3D software for automated formwork design were derived. The 3D software should be developed with the aim of automating 3D design, improving construction quality and utilizing the Internet of Things. As a preliminary step to develop 3D software, the prototype demo version was developed to implement 3D design automation function, which confirm the possibility of 3D software development.

  • PDF

Development of Method for Manufacturing Freeform EPS Forms Using Sloped-LOM Type 3D Printer (Sloped-LOM 방식 3D 프린터를 이용한 비정형 EPS 거푸집 제작 공법 개발)

  • Ahn, Heejae;Lee, Dongyoun;Ji, Woojong;Lee, Woojae;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.171-181
    • /
    • 2020
  • Recently, free-formed construction technology is becoming a new measure of representing technological superiority and sociocultural ingenuity. However, the CNC processing technology utilizing the existing wood and iron form has limitations in terms of the manufacturing time and material cost. Therefore, in this study, the method and process of manufacturing free-formed EPS form using S-LOM-based 3D printing technology were suggested. Furthermore, through the mock-up test, a comparative analysis of the manufacturing time and precision with CNC milling technology was conducted. The results show that S-LOM-based 3D printing technology has reduced manufacturing time about 57.4% compared to CNC milling technology during the free-formed EPS form manufacturing process. In addition, compared to the design drawings, the maximum error value was 20.5mm, proving the applicability of S-LOM-based 3D printing technology. The results of this study are expected to contribute to the improvement of S-LOM method and the activation of S-LOM method by verifying the applicability of S-LOM-based 3D printing technology.

Development of Productivity Analysis Simulation Model for Formwork Based on 3D Printing Technology Using ARENA (ARENA를 활용한 3D 프린팅 기술 기반 거푸집 공사의 생산성 분석 시뮬레이션 모델 개발)

  • Ahn, Heejae;Lee, Changsu;Kim, Harim;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.188-189
    • /
    • 2021
  • The technology of manufacturing freeform molds with S-LOM based 3D printer has advantages in the production period and the curvature range. However, there is no any support tool about productivity analysis of S-LOM technology because S-LOM technology is early-stage technology. There can be problems about increase of construction time and cost without any decision support tool like productivity analysis models etc. Therefore, in this study, the productivity analysis simulation model for freeform formwork based on S-LOM technology was developed using ARENA software. The process and logic of manufacturing freeform molds can be easily visualized in this model. Futhermore, the resource like labor, equipment and material can be easily optimized with this model. As a result, it can contribute to preventing the increase of construction time and cost in formwork with further productivity analysis.

  • PDF

숏크리트 거동에 대한 갱도모형실험과 수치해석의 비교

  • Yu, Gwang-Ho;Lee, Min-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.112-121
    • /
    • 2007
  • 지보재의 파괴가 고려된 터널의 안전율을 산정하기 위해 허용응력 설계법에 기초하여 숏크리트 내에 발생하는 응력이 허용응력을 초과하면 숏크리트가 파괴된다고 가정하고, 전단강도 감소기법을 이용하여 수치해석적(2차원)으로 구하는 방법이 유광호 등(2005)에 의해 제시되었다. 하지만 허용응력 설계법에 근거한 방법은 숏크리트의 허용 휨응력을 과소평가하여 터널의 안정성 및 안전율을 과소평가하는 경향이 있다. 따라서 본 논문에서는 숏크리트의 파괴거동을 갱도모형실험을 통해 확인하고 3차원 수치해석에 의해 검증하였다. 갱도모형실험에 사용된 터널은 실제 터널의 거동을 모사하기 위해 폭 3.3m, 높이 2.9m, 깊이 0.5m의 마제형으로 제작되었다. 지보재인 숏크리트는 거푸집을 이용하여 타설하고 28일간 양생하였고 7개의 실린더와 30cm의 모래 뒷채움을 이용하여 지보재에 최대한 등방하중이 가해질 수 있도록 하여 실험을 수행하였다.

  • PDF

Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams (철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가)

  • Kim, Ho Soo;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.373-383
    • /
    • 2006
  • In a steel structural system, noncomposite form deck one-way slab is the plate element supported by four-edged steel beams with unequaled stiffness. However, design criterion has analyzed the one-way slab as the continuous beam. Because the end beams that support the one-way slab have elastic supports t hat cause different deflections according to the support conditions and locations, the bending moments corresponding to the support ic support effect is not considered in the design criterion. Accordingly, to conduct a reasonable estimation of approximate moment coefficients considering the unequaled elastic support conditions, this study analyzes and estimates various models with varia bles for the ratios of live load to dead load and pattern arangements of live loads and span lengths. The analytical methods considering the finite three-dimensional plate element, the two-dimensional elastic support and the infinite stifnes suport are performed.

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold (3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.

Difference Factors Analysis of between Quantity Take-off Using BIM Model and Using 2D Drawings in Reinforced Concrete Building Frame (건물 골조수량 산출 시 BIM모델 기반 수량과 2D도면 기반 수량 차이 요인 분석)

  • Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.651-662
    • /
    • 2023
  • Recently, research on the use of Building Information Modeling(BIM) for various construction management activities is being actively conducted, and interest in 3D model-based estimation is increasing because it has the advantage of being able to be automatically performed using the attribute information of the 3D model. Therefore, this study aimed that the difference in the quantities is calculated the quantity based on the 2D drawing of a building and is extracted from the 3D model created by the Revit software was compared and tried to find out the cause. The difference in the quantity calculated by the two methods was the largest in the formwork, followed by the smallest in the order of the quantity of rebar and concrete. The reason for this difference is that there is a part where the quantity extraction in the 3D model is not suitable for the quantity calculation standard, and in particular, in the case of formwork, it was difficult to separate only the quantity of the necessary part. In addition, since the quantity of rebar was not separated by member, it was impossible to accurately compare the quantity and identify the cause of the difference. Therefore, it is considered to be the most reasonable to use application software that imports only the numerical information necessary for quantity calculation from the 3D model and applies a separate calculation formula.