Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.309-312
/
2016
최근 실세계에 존재하는 물체의 3차원 형상과 색상을 디지털화하는 3차원 객체 복원에 대한 관심이 날로 증가하고 있다. 3차원 객체 복원은 영상 획득, 영상 보정, 점군 획득, 반복적 점군 정합, 무리 조정, 3차원 모델 표현과 같은 단계를 거처 통합된 3차원 모델을 생성한다. 그 중 반복적 점군 정합 방법은 카메라 궤적의 초기 값을 획득하는 방법으로서 무리 조정 단계에서 전역 최적 값으로의 수렴을 보장하기 위해 중요한 단계이다. 기존의 반복적 점군 정합 (iterative closest points) 방법에서는 시간이 지남에 따라 누적된 궤적 오차 때문에 발생하는 객체 표류 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 색상 영상에서 SIFT 특징점을 획득하고 3차원 점군을 얻은 뒤 가중치를 부여함으로써 점 군 간의 더 정확한 정합을 수행한다. 실험결과에서 기존의 방법과 비교하여 제안하는 방법이 절대 궤적 오차 (absolute trajectory error)가 감소하는 것을 확인 했고 복원된 3차원 모델에서 객체 표류 현상이 줄어드는 것을 확인했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.6-9
/
2016
본 논문에서는 3 차원 실사 객체를 사용자의 상호작용을 통해 변형시키는 프레임워크를 제안한다. RGB-Depth 카메라로 다각도에서 객체를 촬영하여 3 차원 좌표 및 색상정보를 획득하고 각 영상에서의 3 차원 좌표들을 이용하여 카메라 포즈를 계산한다. 계산한 카메라 포즈와 획득한 3 차원 좌표 및 색상정보를 이용하여 객체의 3 차원 정보를 복원한 후 복원된 객체에 대해 메쉬(Mesh)를 생성한다. 이렇게 실사 객체의 3 차원 정보를 메쉬로 표현한 뒤, 사용자의 상호작용을 통해 객체의 변형을 가하게 되면 메쉬를 변형하여 렌더링 함으로써 사용자가 원하는 모습으로 실사 객체를 변형시킬 수 있다.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.10
/
pp.150-161
/
2013
This paper presents a new system which produces high resolution 3D contents by capturing multiview images of an object using multiple cameras, and estimating geometric and texture information of the object from the captured images. Even though a variety of multiview image-based 3D reconstruction systems have been proposed, it was difficult to generate high resolution 3D contents because multiview image-based 3D reconstruction requires a large amount of memory and computation. In order to reduce computational complexity and memory size for 3D reconstruction, the proposed system predetermines the regions in input images where an object can exist to extract object boundaries fast. And for fast computation of a visual hull, the system represents silhouettes and 3D-2D projection/back-projection relations by chain codes and 1D homographies, respectively. The geometric data of the reconstructed object is compactly represented by a 3D segment-based data format which is called DoCube, and the 3D object is finally reconstructed after 3D mesh generation and texture mapping are performed. Experimental results show that the proposed system produces 3D object contents of $800{\times}800{\times}800$ resolution with a rate of 2.2 seconds per frame.
Robust extraction of 3D object's features, shape and global motion information from 2D image sequence is described. The object's 21 feature points on the pyramid type synthetic object are extracted automatically using color transform technique. The extracted features are used to recover the 3D shape and global motion of the object using stereo paraperspective camera model and sequential SVD(Singuiar Value Decomposition) factorization method. An inherent error of depth recovery due to the paraperspective camera model was removed by using the stereo image analysis. A 30 synthetic object with 21 features reflecting various position was designed and tested to show the performance of proposed algorithm by comparing the recovered shape and motion data with the measured values.
Three-dimensional image reconstruction allows us to represent real objects in the virtual space and observe the objects at arbitrary view points. This technique can be used in various application areas such as education, culture, and art. In this paper, we propose an implementation method of the high-quality three-dimensional object using multiple Kinect cameras released from Microsoft. First, We acquire color and depth images from triple Kinect cameras; Kinect cameras are placed in front of the object as a convergence form. Because original depth image includes some areas where have no depth values, we employ joint bilateral filter to refine these areas. In addition to the depth image problem, there is an color mismatch problem in color images of multiview system. In order to solve it, we exploit an color correction method using three-dimensional geometry. Through the experimental results, we found that three-dimensional object which is used the proposed method is more naturally represented than the original three-dimensional object in terms of the color and shape.
본 논문에서는 깊이 영상을 개선하는 방법으로 깊이 영상 획득 시 손실된 영역을 복원하는 기법을 제안한다. 대상 객체의 동적인 3차원 정보는 적외선 깊이 센서가 장착된 깊이 비디오 카메라를 통하여 실시간으로 획득한다. 이때, 깊이 비디오뿐만 아니라 각 프레임마다 컬러영상이 동시에 획득된다. 그러나 대상 객체의 일부 또는 전체가 반짝이는 검은 재질로 되어있을 경우, 획득된 깊이 영상에 손실이 발생한다. 특히 방송용 콘텐츠로서 연기자의 3차원 정보를 획득할 때 머리카락 영역이 손실되는 심각한 문제가 발생한다. 이를 해결하기 위해 먼저 컬러 영상을 이용하여 손실된 영역의 위치 정보를 알아낸다. 손실된 영역 내 경계부분의 깊이 정보를 복원한 후 2차 베지어 커브로 보간하여 내부의 깊이 정보를 복원한다. 개선된 깊이 영상을 기반으로 일련의 모델링 과정을 수행하면 보다 자연스러운 3차원 모델을 생성할 수 있다. 생성된 3차원 모델은 실감방송용 콘텐츠로 사용될 수 있으며, 시청자에게 시각상호작용과 촉각상호작용 등 다차원 감각의 상호작용을 제공할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.135-138
/
2014
본 논문에서는 2대의 Kinect 카메라를 이용하여 실세계의 3차원 객체에 대한 복원을 수행하는 방법을 제안한다. 먼저 깊이 가중치가 추가된 계층적 결합형 양방향 필터를 이용하여 Kinect로부터 얻은 원본 깊이 영상을 보정한다. 그리고 카메라 캘리브레이션을 이용하여 카메라의 내부 파라미터와 외부 파라미터를 획득한다. 이를 이용해 3차원 워핑을 수행하여 각 시점의 데이터를 3차원 공간에 점군 모델로 복원하고 표면 모델링 방법을 이용하여 3차원 객체의 매끄러운 표면 모델을 생성한다. 실시간에 가까운 속도를 내기 위해서 계층적 결합형 양방향 필터와 3차원 워핑을 병렬 처리 프레임워크인 CUDA로 구현하여 고속화하였다. 실험을 통해 분리된 각 시점에서의 깊이 정보를 하나의 통합된 3차원 공간에 복원할 수 있었고 초당 5 fps의 속도로 동작하는 것을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.5
/
pp.537-542
/
2011
A mirror neuron is a neuron fires both when an animal acts and when the animal observes the same action performed by another. We propose a method of 3D reconstruction for occluded object motion tracking like Mirror Neuron System to fire in hidden condition. For modeling system that intention recognition through fire effect like Mirror Neuron System, we calculate depth information using stereo image from a stereo camera and reconstruct three dimension data. Movement direction of object is estimated by optical flow with three-dimensional image data created by three dimension reconstruction. For three dimension reconstruction that enables tracing occluded part, first, picture data was get by stereo camera. Result of optical flow is made be robust to noise by the kalman filter estimation algorithm. Image data is saved as history from reconstructed three dimension image through motion tracking of object. When whole or some part of object is disappeared form stereo camera by other objects, it is restored to bring image date form history of saved past image and track motion of object.
This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.
In this paper, we propose a reconstruction technique of the lost hair region for 3D human actor modeling. An active depth sensor system can simultaneously capture both color and geometry information of any objects in real-time. However, it cannot acquire some regions whose surfaces are shiny and dark. Therefore, to get a natural 3D human model, the lost region in depth image should be recovered, especially human hair region. The recovery is performed using both color and depth images. We find out the hair region using color image first. After the boundary of hair region is estimated, the inside of hair region is estimated using an interpolation technique and closing operation. A 3D mesh model is generated after performing a series of operations including adaptive sampling, triangulation, mesh smoothing, and texture mapping. The proposed method can generate recovered 3D mesh stream automatically. The final 3D human model allows the user view interaction or haptic interaction in realistic broadcasting system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.