• Title/Summary/Keyword: 3점 굽힘 시험편

Search Result 16, Processing Time 0.02 seconds

The Method of J Integral Analysis and Estimate (J적분 해석과 산정방법)

  • 이강용;김옥환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.427-431
    • /
    • 1986
  • 3점 굽힘 시험편, 중앙균열 인장 시험편, 콤팩트 인장 시험편에 대한 J적분식을 하나의 일반화된 형태로 유도한다. 이 일반식은 Eftis와 Liebowitz에 의해 제안된 하중과 하중점 변위 사이의 관계와 Sumpter에 의한 탄성과 소성성분 J적분의 중첩개념을 이용함으로써 유도된다. 일반식에 포함된 .eta.계수를 위 3가지 시험편에 대해서 결정한다. 위 3가지 시험편에 대한 J적분의 최종식은 하중과 하중점 변위곡선 아래의 면적을 측정하지 않아도 되는 형태로 나타난다. 본 연구의 결과식은 Landes등에 의한 실험치와 비교하여 매우 잘 일치함을 보인다.

Various Dynamic Behavior of Three Point Bend Specimens under Rapid Loading (빠른 하중을 받고 있는 3점 굽힘 시험편들의 다양한 동적거동)

  • Lee, Ouk-Sub;Cho, Jae-Ung;Han, Moon-sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.178-188
    • /
    • 1999
  • 충격하중을 받는 시험편 높이의 1/4 길이의 notch를 가진 3점 굽힘시험편들의 기계적 거동에 관한 컴퓨터 시뮬레이션을 하고 이 시뮬레이션에 대한 실험적 검증도 하여 그 타당성을 입증하였다. 시험편들의 양쪽 가장자리(지지점)에서 작용되어지는 여러 가지의 하중속도에 대한 경우들과 탄소성 von Mises 재질인 모델들을 시뮬레이션에 포함시켰으며 이들에 대한 결과들을 간극 개구 변위, 반력, 크랙선단 개구 변위 및 변형률등이 속도에 의존되는 재질(점소성 재질)에 대한 시뮬레이션 결과와 비교하였다. 또한 여러가지의 동적 하중을 받는 상황하에서의 안정성이 본 연구의 시뮬레이션을 통하여 비교되었으며 그 차이점들이 규명되었다.

  • PDF

Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties (Al5052/CFRP 복합소재의 표면특성이 접착성과 기계적특성에 미치는 영향)

  • Lee, Min-Sik;Kim, Hyun-Ho;Kang, Chung-Gil
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.295-302
    • /
    • 2013
  • In this study, Al5052/CFRP composites were fabricated for an automobile component by compression molding process inside a U-channel mold. Al5052 sheet were treated by sand blasting with two different particle sizes. Accordingly, surface roughness (Ra) values of $4.25{\mu}m$ and $1.85{\mu}m$ were obtained for the treated Al5052 sheets. The effect of surface roughness of Al5052 sheets on the adhesion and mechanical properties of Al5052/CFRP composites have been evaluated. Shear lap test and 3-point bending test were conducted. Results showed that the shear load for the composite fabricated by using the treated Al5052 sheets with Ra value of $1.85{\mu}m$ and $4.25{\mu}m$ were 3 and 5 times higher than Ra value of $0.73{\mu}m$ of the composite fabricated by using the untreated sheet. The bending stress of 200MPa was obtained for the composite fabricated with untreated Al5052 sheets. The bending stress increased to 400MPa when the composite fabricated from treated sheets. However, the bending stress was not influenced by treating condition through sand blasting.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Dynamic Crack Propagation Analysis for Mild Steel Specimen (연강 시험편에 대한 동적 균열 전파 해석)

  • Choi, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.97-100
    • /
    • 2006
  • Dynamic crack propagation in ductile steel is investigated by means of impact loaded 3 point bending specimens. The specimen has the size of $320{\times}75\;mm$ with a thickness of 10 mm. One static and two dynamic experiments with impact velocities of 30.2 m/s and 45.2 m/s are carried out. High speed photography is used to obtain crack growth and crack tip opening displacement data. Direct measurement of the relative rotation of the two specimen halves is made by using Moire interference pattern. The experiments indicate no or only a slight influence of the loading rate on the crack propagation.

  • PDF

Measurement of Stress Intensity Factor Using Strain Gage Methods (스트레인게이지법을 이용한 응력확대계수 측정)

  • 김재훈;문순일;이현철;김덕희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • Strain gage method is investigated to evaluate the mode I stress intensity factor. Two types of specimens for CT and three point bend specimen are used. Sharp notch of specimens is manufactured by wiring discharge machining. Strain gages signal from the crack tip region are used to calculate stress intensity factors. The results are compared with those of the ASTM E399 method and finite element analysis. The present experimental results coincide well with the data obtained from finite element analysis. Attached position of strain gage should be seriously considered during the application of this method.

  • PDF

A Study on Microscopic Damage Behavior of Carbon Fiber Sheet Reinforced Concrete using Acoustic Emission Technique (음향방출 기법을 이용한 탄소섬유시트강화 콘크리트의 미시적 손상 거동에 관한 연구)

  • 이진경;이준현;정성륜
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.62-70
    • /
    • 1999
  • It was well recognized that damages associated mainly with the aging of civil infrastructrues were one of very serious problems for assurance of safety and reliability. In recent, carbon fiber sheet(CFS) has been widely used for reinforcement and rehabitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bend test has been carried out to understand the damage progress and micro-failure mechanism of CFS reinforced concretes. For these purposes, four kinds of specimens are used, that is, concrete, respectively. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and failure mechanism of specimens. In addititon, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for four types of these specimens.

  • PDF

A study on the fatigue bending strength of quasi-isotropic CFRP laminates subjected to impact damage (축격손상을 받은 의사등방성 탄소섬유강화 복합재의 굽힘피로강도)

  • Park, Soo-Chul;Park, Seol-Hyeon;Jung, Jong-An;Cha, Cheon-Seok;Yang, Yong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.688-695
    • /
    • 2017
  • Compared to metal, CFRP has excellent mechanical characteristics in terms of intensity, hardness, and heat resistance as well as its light weight that it is used widely in various fields. Therefore, this material has been used recently in the aerospace field. On the other hand, the material has shortcomings in terms of its extreme vulnerability to damage occurring internally from an external impact. This study examined the intensity up to its destruction from repeated use with the internal impact of a CFRP laminated plate that had also been exposed to external impact obtain design data for the external plate of aircraft used in the aerospace field. For the experimental method, regarding the quasi-isotopic type CFRP specimen and orthotropic CFRP specimen that are produced with a different layer structure, steel spheres with a diameter of 5 mm were collided to observe the resulting impact damage. Through a 3-point flexural fatigue experiment, the progress of internal layer separation and impact damage was observed. Measurements of the flexural fatigue strength after the flexural fatigue experiment until internal damage occurs and the surface impacted by the steel spheres revealed the quasi-isotopic layer structure to have a higher intensity for both cases.

Evaluation of Bending Strength for Ceramic Honeycomb Using Design of Experiments (실험계획법을 이용한 세라믹 허니컴의 굽힘강도평가)

  • Kim, Jong-Kyu;Baek, Seok-Heum;Cho, Seok-swoo;Shin, Soon-Ki;Joo, Won-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.379-384
    • /
    • 2006
  • Since the monolithic ceramic substrate was introduced for automotive catalytic converters, the durability of the substrate has been a continuing requirement to reduce the emission gas of vehicle. The substrate can occupy a volume as small as 82 $cm^3$ and as large as 8200 $cm^3$ to provide the required substrate for catalytic activity. The long-term durability varies with the size of the substrate from manufacture's point of view. Therefore This study presents that the response surface model using central composite design can explain size effect on the modulus of rupture in a cordierite ceramic monolithic substrate.

  • PDF

Relation between J and CMOD in dynamic loaded 3-point bend specimens (동적 하중을 받는 3점 굽힘 시험편들에서의 J와 CMOD와의 관계)

  • Lee, Ouk-S.;Cha, Il-Nam;Cho, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • Numerical caiculations are made in order to find a possible relation between the J-integral and the crack mouth opening displacement(CMOD) in dynamic nonlinear fracture experiments. Both elastic-plastic and elastic-viscoplastic materials are considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directiy from photographs taken during dynamic experiments.

  • PDF