• 제목/요약/키워드: 3점 굽힘강도

검색결과 54건 처리시간 0.016초

Bulk-fill 복합레진과 전통적 복합레진의 물성비교 (Comparison of the Mechanical Properties between Bulk-fill and Conventional Composites)

  • 노태환;송은주;박소영;표애리;권용훈;김지연;김신;정태성
    • 대한소아치과학회지
    • /
    • 제43권4호
    • /
    • pp.365-373
    • /
    • 2016
  • 치아우식증을 치료할 때 가장 많이 사용되는 수복재료 중 하나는 레진이다. 하지만 레진은 중합수축, 긴 작업시간, 수분 및 오염에 민감하다는 단점들이 존재하고 어린이를 치료할 때 더 두드러진다. 이러한 단점들을 해결하기 위해 bulk filling이 나타나게 되었고, 이를 가능하게 하는 bulk-fill 복합레진이 개발되었다. 본 연구의 목적은 전통적 복합레진과 bulk-fill 복합레진의 물성을 다양한 방법으로 평가 및 비교하기 위함이다. 전통적 복합레진 3 종류(Filtek Z-350 (Z-350), Unifil Flow (UF), Unifil Loflo Plus (UL)), bulk-fill 복합레진 2종류 (SureFil SDR flow (SDR), Tetric N-Ceram bulk fill (TBF))를 사용하였다. 광중합기는 light-emitting diodes를 사용하였고, 한번 중합할 때 20초간 시행하였다. 재료들의 미세경도는 비커스경도기로 측정하였고, 중합도 측정은 Fourier transform infrared spectroscopy을 사용하였다. 중합수축량은 컴퓨터로 제어되는 linometer를 이용하였다. 굴곡강도 및 굴곡계수는 3점 굽힘 시험법으로 측정하였고, 압축강도 및 압축계수와 함께 Universal testing machine을 이용하여 측정하였다. 통계분석은 ANOVA를 사용하였고, Scheffe의 사후검정을 하였다. 미세경도는 상면에서 Z-350이 가장 높은 값을 나타냈고, 하면은 TBF가 높은 값을 나타냈으나 UL은 상하면 모두에서 가장 낮은 값을 보였다. 상면과 하면의 미세경도 값의 비는 SDR, TBF가 높았다. 중합도는 bulk-fill 복합레진과 유동성 복합레진 상하면 모두에서 높게 나타나고, Z-350는 상하면 모두에서 55% 이하로 나타났다. 압축강도는 Z-350이 가장 높았으며 SDR이 낮게 나타났으나 UL과는 통계학적으로 유의하게 차이는 보이지 않았다. 압축계수는 Z-350이 높게 나타났고, UL이 가장 낮았다. 굴곡강도 및 굴곡계수는 Z-350이 가장 높았다. UL은 굴곡강도 및 굴곡계수 모두 가장 낮게 나타났다. UL이 가장 높은 중합수축을 보였고, Z-350이 가장 낮은 중합수축 값을 나타냈다. 유동성 복합레진이 비유동성 복합레진보다 중합 수축 양이 많았다. 결론적으로 bulk-fill 복합레진의 물성은 전통적 복합레진보다 떨어지지만 bulk filling할 때 중요한 상하면의 미세경도비 및 중합도는 높게 나타나 어린이의 치아우식증 수복치료 시 도움이 될 수 있을 것으로 사료된다.

$SrF_2$계 충진재를 함유한 광중합형 복합레진의 특성 (PROPERTIES OF LIGHT-CURED COMPOSITE RESINS CONTAINING $SrF_2$, GLASS FILLER)

  • 김희정;김경남;최병재;이종갑
    • 대한소아치과학회지
    • /
    • 제28권1호
    • /
    • pp.54-66
    • /
    • 2001
  • 기존의 불소방출 복합레진보다 많은 양의 불소를 방출시키기 위해 총 복합레진 중 불소의 함량이 각각 8, 16, 24wt%가 되도록 $SrF_2$계 충진재를 첨가하여 3종의 수복용 불소방출 복합레진 시험군(VF8, VF16, VF24)을 제조하고 이에 대한 물리적 성질과 세포독성 및 불소방출량을 기존의 복합레진 제품인 Heliomolar(HE), Veridonfil(VE), Z100(ZH), Aelitefil(AE) 등의 대조군과 비교 시험하여 다음과 같은 결과를 얻었다. 1. 시험군의 3점 굽힘강도는 ZH에 비해서는 낮았으나, 다른 대조군인 AE, VE와 비슷하였고, HE보다는 우수하였으며, 시험군 간의 유의차는 없었다(p<0.05). 2. 시험군의 표면경도는 ZH보다 낮았고, AE, VE와 유사하였으며, 불소 방출 대조군인 HE보다는 높았다(p<0.05). 시험군 중에서는 VF16, VF24가 VF8에 비해 표면경도가 높았다(p<0.05). 3. 시험군의 마모도는 대조군인 HE, ZH보다 낮았으며, 시험군 중에서는 VF16, VF24가 VF8에 비해 낮은 마모도를 나타내었다(p<0.05). 4. 시험군의 물흡수도는 대조군인 HE, VE, AE와 유사하였으며 ZH보다는 낮았다(p<0.05). 시험군의 용해도는 대조군인 HE와 유의차가 없었으며, VE, ZH, AE보다 높은 용해도를 나타내었다(p<0.05). 5. 시험군은 대조군인 HE보다 $9\sim23$배 많은 양의 불소를 방출하였으며, 시험군의 불소방출량은 $SrF_2$계 충진재의 함유량과 비례하였다. 6. 시험군과 대조군은 모두 약한 정도의 세포독성을 나타내었다. 이상의 실험결과에서 $SrF_2$계 충진재를 첨가한 불소방출 복합레진 시험군의 물리적 성질과 세포독성은 기존의 복합레진과 유사한 것으로 나타났으며, 불소방출량은 기존의 불소방출 복합레진보다 현저히 높아 이차우식증에 대한 항우식효과도 높을 것으로 사료되었다.

  • PDF

하이브리드 유한요소해석을 위한 인공지능 조인트 모델 개발 (Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis)

  • 장경석;임형준;황지혜;신재윤;윤군진
    • 한국항공우주학회지
    • /
    • 제48권10호
    • /
    • pp.773-782
    • /
    • 2020
  • 심층신경망 기반 하이브리드 유한요소해석을 위한 조인트 모델 방법 구축을 소개한다. 트렉터의 앞차축에서 다양한 체결 조건에 의해 유발되는 복잡한 거동 상태를 가지는 볼트와 베어링의 재료 모델을 심층신경망으로 대체했다. 볼트는 6자유도를 갖는 1차원 티모센코 빔 요소를 이용했고, 베어링은 3차원 솔리드 요소를 이용했다. 다양한 하중 조건을 바탕으로 유한요소해석을 한 뒤, 모든 요소에서 응력-변형률 데이터를 추출하고 텐서플로를 이용하여 학습시켰다. 신경망 기반 유한요소해석을 할 때 추출된 데이터를 바탕으로 학습된 심층신경망은 ABAQUS 서브루틴 안에 포함되어 현재 해석 증분의 응력을 예측하고 접선강도행렬을 계산할 수 있게 했다. 학습된 심층신경망 조인트 모델의 일반화 성능은 훈련에 사용되지 않은 새로운 하중 조건에서 해석하여 검증하였다. 최종적으로 이 방법을 이용하여 심층신경망 기반 앞차축 해석을 진행하고 응력장 분포를 검증했다. 또한, 실제 트렉터의 3점 굽힘 실험 결과와 비교하여 심층신경망 기반 해석의 타당성을 검토했다.

BCB 수지로 본딩한 웨이퍼의 본딩 결합력에 관한 연구 (A Study on the Bond Strength of BCB-bonded Wafers)

  • 권용재;석종원
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.479-486
    • /
    • 2007
  • BCB 수지를 이용하여 본딩한 웨이퍼의 BCB 두께, 본딩 촉진제의 사용여부 및 이웃하는 적층 물질의 종류에 따른 본딩 결합력에 대한 영향을 4-점 굽힘방법을 이용하여 규명한다. 실험결과 본딩 결합력은 BCB 두께에 선형 비례하는데, 이는 BCB의 소성 변형의 정도가 두께에 비례하는 반면에 BCB의 항복 강도에는 영향을 미치지 않기 때문이다. 본딩한 BCB의 두께가 각각 $2.6{\mu}m$$0.4{\mu}m$인 경우에 대하여 본딩 촉진제를 사용 했을 때, 본딩 촉진제와 본딩된 물질의 표면에서는 공유 결합이 형성되기 때문에 본딩 결합력이 증가한다. 산화 규소막이 증착된 실리콘 웨이퍼와 BCB 사이 계면에서의 본딩 결합력은 글래스 웨이퍼와 BCB 사이의 계면에서 보다 약 3배 정도 높다. 이러한 본딩 결합력의 차이는 각 계면에서 Si-O 본드의 본딩 밀도 및 본드 파단 에너지의 차이에 기인한다. PECVD 산화 규소막을 증착한 실리콘 웨이퍼와 BCB 사이 계면의 경우, 기 측정된 $18J/m^2$$22J/m^2$의 본드 파단 에너지를 얻기 위해 각각 약 $12{\sim}13bonds/nm^2$$15{\sim}16bonds/nm^2$의 Si-O 본드 밀도가 필요하다. 반면에, 글래스 웨이퍼와 BCB 사이 계면의 경우에는 기 측정된 $5J/m^2$의 본드 파단 에너지를 얻기 위해 약 $7{\sim}8bonds/nm^2$의 Si-O 본드 밀도가 필요하다.