• Title/Summary/Keyword: 3성분계 결합재

Search Result 39, Processing Time 0.032 seconds

Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag (서냉슬래그 미분말을 적용한 콘크리트의 역학적 성능 및 내구성 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.356-363
    • /
    • 2017
  • Blast furnace slag(BFS) is a by-product generated during the manufacture of pig ion, and is divided into water-cooled slag(WS) and air-cooled slag(AS) by the coking method of BFS. In this study, concrete specimens with ternary binders were produced at the various replacement levels of cement by AS. Various mechanical properties of concrete, such as compressive and split tensile strengths, absorption and water permeable pore, were measured. In addition, the chloride ions penetration resistance and carbonation resistance were tested to evaluate the durability of concrete incorporating AS. The experimental data indicated that the use of AS up to a maximum of 10% replacement level enhanced the concrete performance. However, a higher replacement of AS exhibited poor mechanical properties and concrete durability.

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

Foamed Concrete with a New Mixture Proportioning Method Comparable to the Quality of Conventional ALC Block (ALC 블록성능의 기포콘크리트 배합설계 연구)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study is to develop a high-performance foamed concrete made with a new mixture proportioning as an alternative of autoclaved lightweight concrete (ALC) block. For the early-strength gain of the foamed concrete under an atmospheric curing condition, the binders and chemical agents were specially contrived as follows: 3% anhydrous gypsum was added to ordinary portland cement (OPC) in which $3CaO{\cdot}SiO_2$ content was controlled to be above 60%; and the content of polyethylene glycol alkylether in a polycarboxylate-based water-reducing agent was modified to be 28%. Using these binders and chemical agents, 11 mixes were prepared with the parameters of W/B ratio (30% to 20% in a interval of 2.5%) and unit binder content ($400kg/m^3$ to $650kg/m^3$ in a interval of $50kg/m^3$). The quality and availability of the mixed foamed concrete were examined according to the minimum requirements specified in the KS for ALC block and existed conventional foamed concrete. The measured properties satisfied the minimum requirement of KS for ALC block and proved that the developed high-performance foamed concrete had considerable potential for practical application.

Optimal Mix Design of High-Performance, Low-Heat Self-Compacting Concrete (고성능 저발열 자기충전 콘크리트의 최적 배합설계)

  • Kim, Young-Bong;Lee, Jun-Hae;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2022
  • The foundation of high-rise concrete building in coastal areas generally must be installed in an integrated manner, not separately, in order to prevent defects caused by stress on the upper and lower parts of the mounting surface and to manage the process smoothly. However, when performing integrated punching, there is a concern that temperature stress cracks may occur due to hydration heat. Due to the large member size, it is difficult to make a sufficient commitment, so it is necessary to mix concrete with high self-charging properties to ensure workability. In this research, the amount of high-performance spray and admixture used was adjusted as experimental variables to satisfy this required performance. Through the analysis of the results for each blending variable, it was found that the unit quantity was 155kg/m3 and the cement ratio in the binder was 18%, and the target values of the pre-concrete properties and compressive strength were satisfied. A four-component binder(18% cement, 50% slag fine powder, 27% fly ash, 5% silica fume) was used.

An Experimental Study on Compression Strength and Carbonation Resistance for Ternary High-Performance Concrete with fly-sah, granulated blast furnace (플라이애쉬와 고로슬래그를 사용한 3성분계 고성능 콘크리트의 강도 및 촉진 중성화에 대한 실험적 고찰)

  • Kwon, Young-Rak;Kim, Hong-Sam;Lee, Chang-Young;Cheng, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.445-448
    • /
    • 2008
  • It is essential that concrete component is made up with aggregate, cement and water. But today, Public concern is increasing of a variety structure and ocean environmental, resource recycle. Also, According to heat of hydration rising, Concrete is make a causative of concrete-crack. Concrete-crack cause a falling-off in quality of concrete. consequently, High-performance concrete is evaluated by concrete material properties and carbonation resistance with different admixture(fixing fly-ash 20%), granulated blast furnace slag replacement ratio (30%, 45%) different W/B (26%, 30%, 34%) and XRD(X-ray Diffraction) analysis.

  • PDF

A Study of Shrinkage Characteristics of Low Shrinkage Normal Strength Concrete With Boundary Restraint Condition (4변 구속조건을 갖는 초저수축 일반강도 콘크리트의 수축특성 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.693-699
    • /
    • 2016
  • In this study, the replacement effects of cementitious materials (fly ash, blast furnace slag, and blended mixtures) were assessed for normal strength concrete with very low shrinkage properties under $350{\mu}{\varepsilon}$ strain using a powder type shrinkage reducing agent. In addition, through mock-up tests of actual size walls restrained with four sides, the shrinkage characteristics using the power type shrinkage reducing agent were measured and the crack reducing ability was assessed. The slump and air contents were measured as the properties of fresh concrete, and the length changes of the prismatic specimens, $100{\times}100{\times}400mm$ in size, were measured for the shrinkage characteristics. To reduce the shrinkage of concrete, the maximum replacing ratio of the fly ash is effective to 20 percent; however, the use of blast furnace slag and ternary mixtures did not reduce the shrinkage.

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.

Studies on the Dietary Fiber of Brown Rice and Milled Rice (현미와 백미의 식이섬유에 관한 연구)

  • Lee, Hee-Ja;Byun, Si-Myung;Kim, Hyong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.576-584
    • /
    • 1988
  • Neutral detergent fiber(NDF) were extracted from the Nampung, Milyang #23, Whasung and Jinhung varieties of rice by neutral detergent fiber method. To determine the properties of NDF three factors were measured : water-binding capacity(WBC), Fe-binding capacity and sodium taurocholate binding with NDF. The average WBC of NDF was $5.60{\pm}0.87gH_2O/g$ NDF, and the average Fe-binding capacity ranged from 24.63% at pH 5.0 to 19.6% at pH 6.0 and 48.98% at pH 7.0. Binding of sodium taurocholate with NDF was determined in vitro using C-14 labeled sodium taurocholate at 100M sodium taurocholate concentrations. NDF binding of Jinhung was 27.87 while Nampung, Milyang #23 and Whasung measured 32% each. When sodium taurocholate concentrations were raised from $40{\mu}M\;to\;240{\mu}M$ the tendency of binding increased as the concentrations increased, but not linearly.

  • PDF

Transmissivity property of condition of melting temperature and added quantity of copper of phosphate glass for ir filter (Ir-filter용 인산계 유리의 용융조건과 Cu 첨가량에 따른 투과율 특성)

  • Kim, Seong-Il;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Choi, Duck-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.337-337
    • /
    • 2009
  • 가시광선영역에서 매우 균일한 높은 투과성뿐만 아니라 근적외선영역에서 가파른 홉수성 엣지와 함께 낮은 투과율을 제공하는 산화구리(II)를 함유하는 포스페이트 유리는 컬러 비디오 카메라의 컬러 보정 필터, 발광 컬러 디스플레이용 보호판(sheild), 모노크로메이터의 미광 필터, 플라스틱 복합재 필터의 무기 성분 및 CCD(전하 결합 소자) 및 CMOS(상보성 금속 산화물 반도체) 카메라 및 검출기 분야용 필터 유리로서 사용된다. 용융온도 및 산화구리(II) 첨가량에 따른 투과율을 측정하기 위해 포스페이트 유리 시료를 $1100\sim1500^{\circ}C$ 용융한 후 $400^{\circ}C$에서 2시간 동안 어닐링 공정을 거쳐 제조하였다. 제조된 시료는 두께 0.3mm로 폴리싱하여 자외선-적외선 분광 광도기를 이용하여 광학적 특성을 측정하였다. 본 실험을 통하여 용융온도에 따라 가시광선영역 및 근적외선영역에서의 투과율 거동을 비교한 결과 $1100\sim1200^{\circ}C$에서의 우수한 투과율 특성을 나타냈다. 용융온도가 내려감에 따른 가시광선영역 (400~600nm)에서 높은 투과율 및 근적외선영역 (750~1100nm)에서 낮은 투과율과 가파른 흡수성 엣지를 나타냈다.

  • PDF