• 제목/요약/키워드: 3,4-ethylenedioxythiophene

검색결과 152건 처리시간 0.028초

PEDOT를 이용한 CRT용 반사방지 및 대전방지 코팅 (An Antireflection and Antistatic Coatings for CRTs using PEDOT)

  • 김태영;김종은;이보현;서광석;김진열
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.61-66
    • /
    • 2002
  • A method for designing antireflection (AR) and antistatic (AS) coating layer by the use of conducting polymer as an electrically conductive transparent layer is proposed. The conducting AR coating is composed of four-layer with alternating high and low refractive index layer: silicon dioxide (n=1.44) and titanium dioxide (n=2.02) prepared at low temperature by sol-gel method are used as the low and high refractive index layer, respectively. The poly(3,4-ethylenedioxythiophene) which has the surface resistivity of 10$^4$Ω/$\square$ is used as a conductive layer. Optical constant of each ARAS coating layers such as refractive index and optical thickness were measured by 7he spectroscopic ellipsometer and from the measured optical constants the spectral properties such as reflectance and transmittance were simulated in the risible region. The reflectance of ARAS films on glass substrate was below 1 %R and the transmittance was higher than 95 % in the visible wavelength (400-700 nm). The measured AR spectral properties was very similar to its simulated results.

High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties

  • Agbolaghi, Samira;Aghapour, Sahar;Charoughchi, Somaiyeh;Abbasi, Farhang;Sarvari, Raana
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.293-300
    • /
    • 2018
  • Reduced graphene oxide (rGO) nanosheets were patterned with poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) and used in photovoltaics. Conductive patternings changed via surface modification of rGO; because polymers encountered a high hindrance while assembling onto grafted rGO. The best records were detected in indium tin oxide (ITO):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS):PBDTDTNT/rGO:PBDT-DTNT:LiF:Al devices, i.e., short current density $(J_{sc})=11.18mA/cm^2$, open circuit voltage $(V_{oc})=0.67V$, fill factor (FF) = 62% and power conversion efficiency (PCE) = 4.64%. PCE increased 2.31 folds after incorporation of PBDT-DTNT into thin films. Larger polymer assemblies on bared-rGO nanosheets resulted in greater phase separations.

New Semiconducting Multi-branched Conjugated Molecules Bearing 3,4-Ethylene-dioxythiophene-based Thiophenyl Moieties for Organic Field Effect Transistor

  • Kim, Dae-Chul;Lee, Tae-Wan;Lee, Jung-Eun;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon;Han, Yoon-Deok;Cho, Mi-Yeon;Joo, Jin-Soo
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.491-498
    • /
    • 2009
  • New $\pi$-conjugated multi-branched molecules were synthesized through the Homer-Emmons reaction using alkyl-substituted, 3,4-ethylenedioxythiophene-based, thiophenyl aldehydes and octaethyl benzene-l,2,4,5-tetrayltetrakis(methylene) tetraphosphonate as the core unit; these molecules have all been fully characterized. The two multi-branched conjugated molecules exhibited excellent solubility in common organic solvents and good self-film forming properties. The semiconducting properties of these multi-branched molecules were also evaluated in organic field-effect transistors (OFET). With octyltrichlorosilane (OTS) treatment of the surface of the $SiO_2$ gate insulator, two of the crystalline conjugated molecules, 7 and 8, exhibited carrier mobilities as high as $2.4({\pm}0.5){\times}10^{-3}$ and $1.3({\pm}0.5){\times}10^{-3}cm^2V^{-1}s^{-1}$, respectively. The mobility enhancement of OFET by light irradiation ($\lambda$ = 436 nm) supported the promising photo-controlled switching behavior for the drain current of the device.

은 나노와이어 기반 하이브리드 이중층 압력 센서 (A Hybrid Bilayer Pressure Sensor based on Silver Nanowire)

  • 이진영;신동균;김기은;서유석;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

M-shaped 파형을 이용한 작은 액적의 잉크젯 프린팅 (Inkjet Printing of Small Droplets Using M-shaped Waveforms)

  • 홍송은;최지호;김기은;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.51-56
    • /
    • 2021
  • Using an inkjet printing process, we have investigated a droplet formation of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) near the orifice of a piezoelectric inkjet head. With an attempt to form the smallest droplet without any satellites, we have applied various waveforms such as the unipolar, bipolar, and M-shaped waveforms. It is found that the droplet velocity and volume vary depending sensitively on the waveform width and voltage. Of those, the M-shaped waveform is shown to provide the smallest droplet volume, followed by the bipolar and then unipolar waveforms. The droplet printed on a PET film roll by the M-shaped waveform has the diameter as small as 46.1 ㎛. It is likely that the second short unipolar in the M-shape waveform increases the droplet velocity gradient, rendering the droplet smaller.

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye;Kim, Jin Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.220-228
    • /
    • 2018
  • This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.

전극과 계면간의 개질에 의한 유기태양전지의 성능 연구 (A performance study of organic solar cells by electrode and interfacial modification)

  • 강남수;어용석;주병권;유재웅;진병두
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

PEDOT:PSS 전극의 전도도향상에 의한 CNT/PVDF 복합막의 압전성능 개선 (Improvement of Piezoelectric Performance of the CNT/PVDF Composite Film by Enhancing Conductivity of the PEDOT:PSS Electrodes)

  • 임영택;이선우
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.716-719
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF (carbon nanotube / polyvinylidene fluoride) piezoelectric composite device with flexible poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT:PSS) conducting polymer electrode using spray coating method. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by enhancing electrical conductivity of the PEDOT:PSS electrodes. Electrical conductivity of the PEDOT:PSS electrode was enhanced by dipping it into the EG (ethylene glycol) solvent. Changes of chemical composition of the PEDOT:PSS electrode were analyzed with the dipping time by XPS (x-ray photoelectron spectroscopy) in terms of oxygen (O1s). Finally, Piezoelectric performances such as output voltage and current were measured with the dipping time. We found that enhanced electrical conductivity of the PEDOT:PSS electrodes resulted in improvement of the piezoelectric performance of the CNT/PVDF films.

Photonic Crystal Effect of Nano-Patterned PEDOT:PSS Layer and Its Application to Absorption Enhancement of ZnPc Thin Films

  • Han, Ji-Young;Ryu, Il-Whan;Park, Da-Som;Kwon, Hye-Min;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.252-252
    • /
    • 2012
  • It is widely accepted that short exciton diffusion lengths of organic semiconductors with respect to the film thickness limit the charge (hole and electron) separation before excitons recombination in organic photovoltaic (OPV) cells. Therefore the efficient absorption of incident light within the thin active organic layer is of great importance to improve the power conversion efficiency (PCE) of the cells. In this work, we fabricated 2-dimensionally (2D) nano-patterned poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOST:PSS) layers using capillary phenomenon and nano-imprinting technology at the scale of several hundred nanometers. This 2D nano-patterned PEDOT:PSS layer exerted photonic crystal effect such as redirection of light paths and variation of light intensity at specified wavelengths. It is also expected that the consequently alternated light pass lengths and intensities change the absorption properties of zinc phthalocyanine (ZnPc) thin films grown on top of the nano-patterned PEDOT:PSS layer. The influence of conductivity and thickness of the PEDOT:PSS layer on the absorption properties of ZnPc thin films were also investigated.

  • PDF