• Title/Summary/Keyword: 3,3',4',5',7-pentahydroxyflavone

Search Result 14, Processing Time 0.02 seconds

Extractives from the Bark of Platycarya strobilacea (굴피나무(Platycarya strobilancea) 수피의 Flavonol glycosides)

  • Lee, Hak-Ju;Lee, Sang-Keug;Choi, Yun-Jeong;Jo, Hyun-Jin;Kang, Ha-Young;Choi, Don-Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.408-413
    • /
    • 2007
  • The dried bark of Platycarya strobilacea were ground, extracted with 95% EtOH, concentrated, and one of EtOH extracts was fractionated with a series of n-hexane, dichloromethane and another was fractionated with a series of petroleumether, $Et_2O$, ethyl acetate on a separatory funnel. A portion of dichloromethane soluble was chromatographed on a Sephadex LH-20 column ($72.0{\times}5.0cm$) using EtOH-$CHCl_3$ (7:3, v/v) as eluent and A portion of $Et_2O$ soluble was chromatographed on a silica gel column ($42.0{\times}3.5cm$) using $CHCl_3$-MeOH (9:3, v/v) as eluent. The isolated compounds were identified by TLC, $^1H$-, $^{13}C$-NMR, HMBC and EI-MS. Two flavonoids and three flavonoid glycosides were isolated from the bark of P strobilacea. The structures were determined to quercetin (compound 1), myricetin (compound 2) as flavonol compounds and afzelin (compound 3), quercitrin (compound 4), myricitrin (compound 5) as flavonol glycosides, respectively, on the basis of spectrosopic data.

Rutin induces autophagy in cancer cells

  • Park, Mi Hee;Kim, Seyeon;Song, Yu-ri;Kim, Sumi;Kim, Hyung-Joon;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Rutin (3,3',4',5,7-pentahydroxyflavone-3-rhamnoglucoside) is a bioactive flavonoid from the plant kingdom. Rutin has been studied as potential anticancer agent due to its wide range of pharmacological properties including antioxidative, anti-inflammatory and anticancer. Autophagy is a conserved intracellular catabolic pathway to maintain cell homeostasis by formation of autophagosome. Processing of autophagy involves various molecules including ULK1 protein kinase complex, Beclin-1-Vps34 lipid kinase complex, ATG5, ATG12, and LC3 (light chain 3). Cargo-carried autophagosomes fuse with lysosomes resulting in autophagolysosome to eliminate vesicles and degrade cargo. However, the actions of rutin on autophagy are not clearly understood. In this study, we analyzed the effect of rutin on autophagy and inflammation in cancer cell lines. Interestingly, rutin induced autophagy in leukemia (THP-1), oral (CA9-22), and lung (A549) cell lines. TNF-${\alpha}$, key modulator of inflammation, was upregulated by inhibition of rutin-induced autophagy. Taken together, these data indicated that rutin induced autophagy and consequently suppressed TNF-${\alpha}$ production.

Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

  • Matos, Rosan Barbosa De;Braga-de-Souza, Suzana;Pitanga, Bruno Pena Seara;Silva, Victor Diogenes Amaral Da;Jesus, Erica Etelvina Viana De;Pinheiro, Alexandre Morales;Costa, Maria De Fatima Dias;El-Bacha, Ramon Dos Santos;Ribeiro, Catia Suse De Oliveira;Costa, Silvia Lima
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.613-619
    • /
    • 2014
  • Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation.

Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice

  • Eun-Hye Hong;Jae-Hyoung Song;Seong-Ryeol Kim;Jaewon Cho;Birang Jeong;Heejung Yang;Jae-Hyeon Jeong;Jae-Hee Ahn;Hyunjin Jeong;Seong-Eun Kim;Sun-Young Chang;Hyun-Jeong Ko
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2020
  • Influenza virus is the major cause of seasonal and pandemic flu. Currently, oseltamivir, a potent and selective inhibitor of neuraminidase of influenza A and B viruses, is the drug of choice for treating patients with influenza virus infection. However, recent emergence of oseltamivir-resistant influenza viruses has limited its efficacy. Morin hydrate (3,5,7,2',4'-pentahydroxyflavone) is a flavonoid isolated from Morus alba L. It has antioxidant, anti-inflammatory, neuroprotective, and anticancer effects partly by the inhibition of the NF-κB signaling pathway. However, its effects on influenza virus have not been studied. We evaluated the antiviral activity of morin hydrate against influenza A/Puerto Rico/8/1934 (A/PR/8; H1N1) and oseltamivir-resistant A/PR/8 influenza viruses in vitro. To determine its mode of action, we carried out time course experiments, and time of addition, hemolysis inhibition, and hemagglutination assays. The effects of the co-administration of morin hydrate and oseltamivir were assessed using the murine model of A/PR/8 infection. We found that morin hydrate reduced hemagglutination by A/PR/8 in vitro. It alleviated the symptoms of A/PR/8-infection, and reduced the levels of pro-inflammatory cytokines and chemokines, such as TNF-α and CCL2, in infected mice. Co-administration of morin hydrate and oseltamivir phosphate reduced the virus titers and attenuated pulmonary inflammation. Our results suggest that morin hydrate exhibits antiviral activity by inhibiting the entry of the virus.