• Title/Summary/Keyword: 3'-untranslated Region

Search Result 163, Processing Time 0.031 seconds

Characterization of the Small Cryptic Plasmid, pGD2, of Klebsiellia sp. KCL-2.

  • Yoo, Ju-Soon;Kim, Hae-Sun;Chung, Soo-Yeol;Lee, Young-Choon;Cho, Young-Soo;Choi, Yong-Lark
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.584-589
    • /
    • 2001
  • One of the cryptic plasmids from the oil degrading bacterium Klebsiella sp. KCL-2, the small plasmid pGD2, has been identified and characterized. This plasmid has a size of 3.6 kb with unknown functions. We constructed the recombinant plasmid pMGD2. The nucleotide sequences of the plasmid were determined and two open reading frames were detected. ORF1 encodes a replication initiator protein (RepA), which has a high degree of homology with the protein of ColE2 plasmid. The product encoded by ORF2 showed a high similarity with the transposase protein of IS5. IS5 is 1195 by long and contains an inverted terminal repetition of 16 bp with one mismatch. Stem-loop structures in the 5'untranslated region of the repA suggest that a putative gene, incA, is located in a complementary strand to the leader region of the repA mRNA.

  • PDF

1828G>A polymorphism of the UDP-glucuronosyltransferase gene (UGT1A1) for neonatal hyperbilirubinemia in Koreans (한국인 신생아 황달에서 UGT1A1 유전자의 1828G>A 단일염기다형성에 관한 연구)

  • Kim, Ja Young;Kim, Mi Yeoun;Kim, Ji Sook;Kim, Eun Ryoung;Yoon, Seo Hyun;Lee, Hee Jae;Chung, Joo Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • Purpose : The incidence of neonatal hyperbilirubinemia is twice as high in East Asians as in Caucasians. However, its metabolic basis has not been clearly explained. The UDP-glucuronosyltransferase gene(UGT1A1) mutation was found to be a risk factor of neonatal hyperbilirubinemia. We studied whether neonatal hyperbilirubinemia is associated with the 1828G>A(rs 10929303) polymorphism of the UGT1A1 gene, which encodes for a key enzyme of bilirubin metabolism. Methods : The genomic DNA was isolated from 80 Korean full term neonates who had greater than a 12 mg/dL level of serum bilirubin with no obvious cause, and the genomic DNA was also isolated from 164 Korean neonates of the control population. We studied a single nucleotide polymorphism (SNP) of 1828G>A in the untranslated region of the UGT1A1 gene by direct sequencing. Results : Three of the 80 neonates with a serum bilirubin level above 12 mg/dL had homozygous mutations and 10 of the 80 neonates with a serum bilirubin level above 12 mg/dL had heterozygous mutations. Thirteen of the 164 neonates of the control group had homozygous mutations and 16 neonates of the control group had heterozygous mutations. The allele frequency of 1828G>A polymorphism of UGT1A1 in the hyperbilirubinemia group was 10.0 percent, which was not significantly different from the allele frequency of 12.8 percent in the control group. Conclusion : In this study, the 1828G>A polymorphism of the UGT1A1 gene was detected in the Korean neonates with neonatal hyperbilirubinemia. Our results indicated that this SNP is not associated with the prevalence of hyperbilirubinemia in Koreans.

Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A

  • Yoon, Sena;Han, Eunji;Choi, Young-Chul;Kee, Honghwan;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.314-321
    • /
    • 2014
  • CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.

Porcine LMNA Is a Positional Candidate Gene Associated with Growth and Fat Deposition

  • Choi, Bong-Hwan;Lee, Jung-Sim;Lee, Seung-Hwan;Kim, Seung-Chang;Kim, Sang-Wook;Kim, Kwan-Suk;Lee, Jun-Heon;Seong, Hwan-Hoo;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1649-1659
    • /
    • 2012
  • Crosses between Korean and Landrace pigs have revealed a large quantitative trait loci (QTL) region for fat deposition in a region (89 cM) of porcine chromosome 4 (SSC4). To more finely map this QTL region and identify candidate genes for this trait, comparative mapping of pig and human chromosomes was performed in the present study. A region in the human genome that corresponds to the porcine QTL region was identified in HSA1q21. Furthermore, the LMNA gene, which is tightly associated with fat augmentation in humans, was localized to this region. Radiation hybrid (RH) mapping using a Sus scrofa RH panel localized LMNA to a region of 90.3 cM in the porcine genome, distinct from microsatellite marker S0214 (87.3 cM). Two-point analysis showed that LMNA was linked to S0214, SW1996, and S0073 on SSC4 with logarithm (base 10) of odds scores of 20.98, 17.78, and 16.73, respectively. To clone the porcine LMNA gene and to delineate the genomic structure and sequences, including the 3'untranslated region (UTR), rapid amplification of cDNA ends was performed. The coding sequence of porcine LMNA consisted of 1,719 bp, flanked by a 5'UTR and a 3'UTR. Two synonymous single nucleotide polymorphisms (SNPs) were identified in exons 3 and 7. Association tests showed that the SNP located in exon 3 (A193A) was significantly associated with weight at 30 wks (p<0.01) and crude fat content (p<0.05). This association suggests that SNPs located in LMNA could be used for marker-assisted selection in pigs.

Prediction of Mammalian MicroRNA Targets - Comparative Genomics Approach with Longer 3' UTR Databases

  • Nam, Seungyoon;Kim, Young-Kook;Kim, Pora;Kim, V. Narry;Shin, Seokmin;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.53-62
    • /
    • 2005
  • MicroRNAs play an important role in regulating gene expression, but their target identification is a difficult task due to their short length and imperfect complementarity. Burge and coworkers developed a program called TargetScan that allowed imperfect complementarity and established a procedure favoring targets with multiple binding sites conserved in multiple organisms. We improved their algorithm in two major aspects - (i) using well-defined UTR (untranslated region) database, (ii) examining the extent of conservation inside the 3' UTR specifically. Average length in our UTR database, based on the ECgene annotation, is more than twice longer than the Ensembl. Then, TargetScan was used to identify putative binding sites. The extent of conservation varies significantly inside the 3' UTR. We used the 'tight' tracks in the UCSC genome browser to select the conserved binding sites in multiple species. By combining the longer 3' UTR data, TargetScan, and tightly conserved blocks of genomic DNA, we identified 107 putative target genes with multiple binding sites conserved in multiple species, of which 85 putative targets are novel.

Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70 (수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현)

  • Min, Byung Hwa;Hur, Jun Wook;Park, Hyung Jun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.639-647
    • /
    • 2018
  • A new heat shock protein 70 was identified in red-spotted grouper (Epinephelus akaara) based on an expression analysis. The cDNA of red-spotted grouper Hsp70 (designated RgHsp70) was cloned by the rapid amplification of cDNA ends (RACE) techniques. The full-length of RgHsp70 cDNA was 2,152 bp, consisting of a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 274 bp, and an open reading frame (ORF) of 1,773 bp that encode a polypeptide of 590 amino acids with a theoretical molecular weight of 64.9 kDa and an estimated isoelectric point of 5.2. Multiple alignment and phylogenetic analyses revealed that the RgHsp70 gene shares a high similarity with other Hsp70 fish genes. RgHsp70 contained all three classical Hsp70 family signatures. The results indicated the RgHsp70 is a member of the heat shock protein 70 family. RgHsp70 mRNA was predominately expressed in the liver, with reduced expression noted in the head-kidney tissues. The expression analysis of different water temperatures (21, 18, 15 and $12^{\circ}C$) for sampled livers revealed that expression gradually increased at $12^{\circ}C$ compared to $21^{\circ}C$. In this study, the effects of water temperature lowering on the physiological conditions were investigated, and the results revealed that novel RgHsp70 may be an important molecule involved in stress responses.

Post-transcriptional and post-translational regulation during mouse oocyte maturation

  • Kang, Min-Kook;Han, Seung-Jin
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.147-157
    • /
    • 2011
  • The meiotic process from the primordial stage to zygote in female germ cells is mainly adjusted by post-transcriptional regulation of pre-existing maternal mRNA and post-translational modification of proteins. Several key proteins such as the cell cycle regulator, Cdk1/cyclin B, are post-translationally modified for precise control of meiotic progression. The second messenger (cAMP), kinases (PKA, Akt, MAPK, Aurora A, CaMK II, etc), phosphatases (Cdc25, Cdc14), and other proteins (G-protein coupled receptor, phosphodiesterase) are directly or indirectly involved in this process. Many proteins, such as CPEB, maskin, eIF4E, eIF4G, 4E-BP, and 4E-T, post-transcriptionally regulate mRNA via binding to the cap structure at the 5' end of mRNA or its 3' untranslated region (UTR) to generate a closed-loop structure. The 3' UTR of the transcript is also implicated in post-transcriptional regulation through an association with proteins such as CPEB, CPSF, GLD-2, PARN, and Dazl to modulate poly(A) tail length. RNA interfering is a new regulatory mechanism of the amount of mRNA in the mouse oocyte. This review summarizes information about post-transcriptional and post-translational regulation during mouse oocyte meiotic maturation.

Complete Sequence Analysis of a Korean Isolate of Chinese Yam Necrotic Mosaic Virus and Generation of the Virus Specific Primers for Molecular Detection

  • Kwon, Sun-Jung;Cho, In-Sook;Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.194-197
    • /
    • 2016
  • Chinese yam necrotic mosaic virus (CYNMV) is one of the most widespread viruses in Chinese yam (Dioscorea opposita Thunb.) and causes serious yield losses. Currently, genetic information of CYNMV is very restricted and complete genome sequences of only two isolates (one from Japan and another from China) have been reported. In this study, we determined complete genome sequence of the CYNMV isolate AD collected from Andong, Korea. Genetic analysis of the polyprotein amino acid sequence revealed that the Korean isolate AD has high similarity with the Japanese isolate PES3 (97%) but relatively low similarity with the Chinese isolate FX1 (78%). Phylogenetic analysis using the CYNMV 3' proximal nucleotide sequences harboring the coat protein and 3' untranslated region further supported genetic relationship among the CYNMV isolates. Based on comparative analysis of the CYNMV genome sequences determined in this study and other previous studies, we generated molecular detection primers that are highly specific and efficient for CYNMV diagnosis.

Molecular Cloning of the 3'-Terminal Region of Garlic Potyviruses and Immunological Detection of Their Coat Proteins

  • Song, Sang-Ik;Song, Jong-Tae;Chang, Moo-Ung;Lee, Jong-Seob;Park, Yang-Do
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.270-279
    • /
    • 1999
  • cDNAs complementary to the 3'-terminal regions of two potyvirus genomes were cloned and sequenced. The clone G7 contains one open reading frame (ORF) of 1,338 nucleotides and a 3' untranslated region (3'-UTR) of 403 nucleotides at the 3'-end excluding the 3'end poly(A) tail. The putative viral coat protein (CP) shows 55%-92% amino acid sequence homology to those of Allium potyviruses. The genome size of the virus was analyzed to be about 9.0 kb by Northern blot analysis. Five cDNA clones were screened out using GPV2 oligonucleotide as a probe. One of these clones, DEA72, which has a longest cDNA insert, contains one ORF of 1,459 nucleotides and a 3'-UTR of 590 nucleotides at the 3'-end excluding the 3'-end poly(A) tail. The putative viral CP shows 57%-88% amino acid sequence homologies to those of Allium potyviruses. The genome size of the virus was analyzed to be about 9.6 kb by Northern blot analysis. The results of immunoblot and Northern blot analyses suggest that almost all of the tested garlic plants showing mosaic or streak symptoms are infected with DEA72-potyvirus in variable degrees but rarely infected with G7-potyvirus in variable degrees but rarely infected with DEA72-potyvirus in variable degrees but rarely infected with G7-potyvirus. Immunoelectron microscopy using anti-DEA72 CP antibody shows that this potyvirus is about 750 nm long and flexuous rod shaped.

  • PDF

Genetic analysis of the postsynaptic transmembrane X-linked neuroligin 3 gene in autism

  • Hegde, Rajat;Hegde, Smita;Kulkarni, Suyamindra S.;Pandurangi, Aditya;Gai, Pramod B.;Das, Kusal K.
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.44.1-44.9
    • /
    • 2021
  • Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.