• 제목/요약/키워드: 3%Si-Fe

검색결과 1,491건 처리시간 0.032초

고주파유도 가열에 의한 나노구조의 FeCrAlSi-Al2O3 복합재료의 합성 및 급속소결 (Rapid Sintering and Synthesis of Nanostuctured FeCrAlSi-Al2O3 Composite by High-Frequency Induction Heating)

  • 두송이;조승훈;고인용;도정만;윤진국;박상환;손인진
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.231-236
    • /
    • 2011
  • Nanopowder of $Fe_2O_3$, Al, Cr and Si was fabricated by high energy ball milling. A dense nanostuctured $A_2O_3$ and $6.06Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ composite was simultaneously synthesized and consolidated using high frequency induction heated sintering method within 1 minute from mechanically activated powders of $Fe_2O_3$, Al, Cr and Si. The grain sizes of $Al_2O_3$ and $Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ in composite are 80 and 18 nm, respectively.

복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향 (Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting)

  • 김정민;정기채;김채영;신제식
    • 한국주조공학회지
    • /
    • 제41권1호
    • /
    • pp.3-10
    • /
    • 2021
  • 알루미늄 합금과 주철의 복합주조 공정 중에는 주철로부터 철 성분이 용해되어 알루미늄 용탕에 혼입될 수 있으므로 다양한 Fe함유 금속간 화합물이 형성되며, 이로 인해 알루미늄 합금의 인장 특성이 크게 저하 될 수 있다. 반면 불순물로 첨가되는 Fe와 는 달리 Cu의 경우 알루미늄 합금의 기계적 물성을 향상시키기 위해 첨가되는 합금원소이다. 본 연구에서는 Fe와 Cu의 첨가로 인한 알루미늄 합금의 미세조직 및 인장특성의 변화를 조사하였다. 첨가된 Fe 함량이 1% 이상일 경우 조대한 Al5FeSi 상과 같은 Fe 함유 화합물들이 다량 형성되어 인장 특성이 현저히 감소하는 것으로 나타났다. Cu가 첨가 된 알루미늄 합금의 경우 Al2Cu 상이 추가로 형성되었으며, 인장 강도가 뚜렷하게 향상되는 결과를 보였다.

Fabrication and Magnetic Properties of A New Fe-based Amorphous Compound Powder Cores

  • Xiangyue, Wang;Feng, Guo;Caowei, Lu;Zhichao, Lu;Deren, Li;Shaoxiong, Zhou
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.318-321
    • /
    • 2011
  • A new Fe-based amorphous compound powder was prepared from Fe-Si-B amorphous powder by crushing amorphous ribbons as the first magnetic component and Fe-Cr-Mo metallic glassy powder by water atomization as the second magnetic component. Subsequently by adding organic and inorganic binders to the compound powder and cold pressing, the new Fe-based amorphous compound powder cores were fabricated. This new Fe-based amorphous compound powder cores combine the superior DC-Bias properties and the excellent core loss. The core loss of 500 kW/$m^3$ at $B_m$ = 0.1T and f = 100 kHz was obtained When the mass ratio of FeSiB/FeCrMo equals 3:2, and meanwhile the DC-bias properties of the new Fe-based amorphous compound powder cores just decreased by 10% compared with that of the FeSiB powder cores. In addition, with the increasing of the content of the FeCrMo metallic glassy powder, the core loss tends to decrease.

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에서 브레이징 조건이 접합강도에 미치는 영향의 연구 (The effects of brazing conditions on the bond strength of the SiC/SiC and SiC/mild steel joints brazed by Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.104-114
    • /
    • 1997
  • The microstructure and bond strength were investigated on the SiC/SiC and SiC/mild steel joints brazed by Ag-5at%Ti alloy. Ag-5at%Ti-2at%Fe and -5at%Fe brazing alloys were also used to see the effects of Fe addition on the bond strength of SiC/SiC brazed joints. Brazing temperature and brazing gap were selected and examined as brazing variables. The microstructure of SiC/SiC brazed joints was affected by Fe addition to the Ag-5at%Ti alloy, but the bond strength was not. Increasing brazing temperature also changed the microstructure of $Ti_5Si_3$ reaction layer and brazing alloy matrix of the SiC/SiC and SiC/mild steel joints, but not the bond strength. Brazing gap had a great effects on the bond strength. Decreasing brazing gap from 0.2 mm to 0.1 mm in SiC/SiC brazing increased the bond strength from 187 MPa to 263 MPa and, in SiC/mild steel brazing, from 189 MPa to 212 MPa. It was concluded that the most important parameter on the bond strength in SiC/SiC and SiC/mild steel brazing was the relative ratio between brazing gap and specimen size.

  • PDF

RF-스퍼터링 기법으로 제작한 Fe3O4 박막에 Ta 기저층이 미치는 효과 (Ta Buffer Layer Effect on the Growth of Fe3O4 Thin Films Prepared by RF-sputtering)

  • 국지현;이년종;배유정;김태희
    • 한국자기학회지
    • /
    • 제25권2호
    • /
    • pp.43-46
    • /
    • 2015
  • $SiO_2$ 산화막이 제거되지 않은 Si(100) 기판 위에 실온에서 5 nm Ta과 5 nm MgO 기저층을 증착하고, 그 위에 RF 스퍼터링 기법으로 실온에서 약 35 nm 두께의 $Fe_3O_4$ 박막을 적층하였다. 진공 후열처리에 따라 향상된 $Fe_3O_4$ 박막의 결정성과 그에 따른 자기적 특성의 변화 양상을 관찰하였다. $500^{\circ}C$에서 1시간 동안 후열처리한 시료에 대해, 실온에서 강자성 특성을 보았을 뿐만 아니라, $Fe_3O_4$ 박막의 고유한 특성으로 알려진 Verwey 상전이 현상 또한 관찰되었다. 후열처리에 의해 MgO 박막 위에 적층된 $Fe_3O_4$에 미치는 Ta 기저층의 영향에 대해 Ta이 삽입되지 않은 경우와 비교하여 논의 할 것이다.

Fe-(Mo-Mn-P)-xSi계 합금의 성형밀도에 따른 소결거동 (Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density)

  • 정우영;옥진욱;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.400-405
    • /
    • 2017
  • The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and $7.2g/cm^3$. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with $7.2g/cm^3$ is twice as high as that compacted with $7.0g/cm^3$.

Fe, Cr, Mn, Si, Ni의 첨가에 의한 고력황동의 미세조직과 마모특성 (Microstructure and Wear Properties of High Strength Yellow Brass by Addition of Fe, Cr, Mn, Si and Ni)

  • 박재용;강춘식;신윤호;배정찬
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.258-266
    • /
    • 1997
  • The purpose of this study is to improve hardness and wear resistance of high strength yellow brass by adding Fe, Cr, Mn, Si and Ni. Results showed that NiO, $FeCr_2O_4$ and intermetallic compound $Mn_5Si_3$ were produced when Ni, Fe-Cr and Mn-Si were added to the yellow brass. The hardness and wear tests showed the best results with the presence of the product precipitates and intermetallic compound. The calculation of relative wear resistance by volume fraction of each phases showed that the relative wear resistance of $Mn_5Si_3$ had the highest value, that of ${\beta}$ phase had the lowest. Observation of the worn surface showed that the main wear mechanism were found to be the abrasive wear, and also showed that the wear is caused by mechanical failure at the early stage.

  • PDF

분말야금법으로 제조된 FeSi2 열전특성 화합물의 열처리 시간에 따른 미세조직과 상변화 (Phase Transformation and Microstructure of FeSi2 Thermoelectric Compounds Manufactured by Powder Metallurgy)

  • 박경태;신진교;홍순직;천병선
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.482-488
    • /
    • 2010
  • In this study, $FeSi_2$ as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below $1200^{\circ}C$ for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering ($1200^{\circ}C$, 12 h). In order to precipitate ${\beta}-FeSi_2$, heat treatment was performed at $850^{\circ}C$ with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase ${\beta}-FeSi_2$ was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.

Rapidly Solidified Fe-6.5wt% Si Alloy Powders for High Frequency Use

  • Park, Seung-Dueg;Yang, Choong-Jin
    • Journal of Magnetics
    • /
    • 제2권1호
    • /
    • pp.12-15
    • /
    • 1997
  • Fe-(3∼6.5wt%) Si alloy powders having a high magnetic induction(Bs) and a low core loss value for high frequency use were obtained by an extractive melt spinning as well as a centrifugal atomization technique. Sintered core rings made by the rapidly solidified Fe-6.5wt% Si powders exhibited the high frequency magnetic properties : megnetic induction(B8) of 1.23 T, coercivity(Hc) of 0.12 Oe, relative permeability(${\mu}$a) of 6321, and core loss(W10/50) of 1.27 W/kg from the rings of 1.1 mm thick. The magnetic induction values were found to be almost identical to those of non-oriented Fe-6.5wt% Si steel sheet and double the value of 6.5wt% Si sheet prepared by the CVD technique. The high frequency core losses(W) up to 10 kHz(W10/10k) were measured to be competitive to those of grain-oriented Fe-6.5wt% Si steel sheet.

  • PDF

알루미늄 청동의 미세조직과 기계적 성질에 미치는 Fe 및 Si 첨가의 영향 (Effects of Iron and Silicon Additions on the Microstructures and Mechanical Properties of Aluminium Bronze)

  • 김지환;김지태;김진한;박흥일;김성규
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of Fe and Si additions on the microstructures and mechanical properties of aluminum bronze have been investigated. In a bar-type specimen cast in a die mold, the addition of Fe promoted the dendritic solidification of the ${\alpha}$ phase. The hardness values increased slightly in the Fe-added specimen with heat treatment, while these values was increased significantly in the specimens with Si or with combined additions of Fe and Si. When a centrifugal casting bush with combined addition of Fe and Si was heat treated, the FeSi compound within the matrix was finely dispersed, and was observed to be the origin of cup-cone type conical dimple failure in the tensile fracture surface. The mechanical properties of the heat treated centrifugal casting bushes, whose nominal alloy compositions were (Cu-7.0Al-0.8Fe-3.0Si)wt%, exhibited tensile strength of $703-781N/mm^2$, elongation of 6.6-11.7% and hardness of Hv 222.6-249.2. These high values of strength and elongation were attributed to the strengthening of the matrix due to the combined addition of Fe and Si, and to precipitation of fine the FeSi compound.