• 제목/요약/키워드: 2DOF model

검색결과 217건 처리시간 0.025초

목표치 정형화 및 외란 관측기를 활용한 연속 냉간압연 시스템의 2-자유도 스트립 두께 및 장력 최적 제어기 설계 (Design of Two-DOF Optimal Controller for Strip Gage and Tension Control of Cold Tandem Mills Using Reference Shaping Filter and Disturbance Observer)

  • 홍완기;강현석;황이철
    • 대한기계학회논문집A
    • /
    • 제36권2호
    • /
    • pp.237-244
    • /
    • 2012
  • 이 논문은 목표치 정형화 필터와 외란관측기를 활용하여 연속 냉간압연 시스템의 스트립 두께 및 장력에 대한 2-자유도 최적 제어기 설계에 관한 연구를 수행한다. 먼저 게이지 미터식과 후크 법칙을 이용하여 스트립 두께 및 장력에 관한 동적모델을 각각 구축한다. 다음에는 동적모델을 기반으로 2-자유도 제어기를 설계한다. 여기서 피드포워드 제어기는 목표치 정형화 필터와 외란 관측기를 활용한 제어기로 구성되며, 피드백 제어기는 역 최적 제어기로 설계된다. 끝으로 컴퓨터 시뮬레이션을 통하여 이 논문에서 제안한 2-자유도 최적 제어기가 연속 냉간압연 시스템의 기존 제어기보다 스트립 두께 및 장력에 대한 목표치 추종성능과 외란 제거성능이 매우 우수함을 보인다.

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

매니퓰레이터 장착 쿼드로터를 위한 다중 슬라이딩 평면 제어의 시스템 설계 (Design of Multiple Sliding Surface Control System for a Quadrotor Equipped with a Manipulator)

  • 황남웅;박진배;최윤호
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.502-507
    • /
    • 2016
  • In this paper, we propose a tracking control method for a quadrotor equipped with a 2-DOF manipulator, which is based on the multiple sliding surface control (MSSC) method. To derive the model of a quadrotor equipped with a 2-DOF manipulator, we obtain the models of a quadrotor and a 2-DOF manipulator based on the Lagrange-Euler formulation separately - and include the inertia and the reactive torque generated by a manipulator when these obtained models are combined. To make a quadrotor equipped with a manipulator track the desired path, we design a double-loop controller. The desired position is converted into the desired angular position in the outer controller and the system's angle tracks the desired angular position through the inner controller based on the MSSC method. We prove that the position-tracking error asymptotically converges to zero based on the Lyapunov stability theory. Finally, we demonstrate the effectiveness of the proposed control system through a computer simulation.

2자유도 진동계에 관한 이론적 고찰 및 진동흡진기로의 응용 (Theoretical Investigation of 2DOF Vibrating System and Its Application to Dynamic Vibration Absorber)

  • 장선준;;;정형조
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.371-377
    • /
    • 2009
  • 본 연구에서는 회전 및 병진 자유도를 갖는 2자유도 진동계의 동적 특성을 다루었다. 강체의 관성모멘트를 새로운 기계 요소인 이너터로 모델링한 뒤 동강성법을 이용하여 2자유도 진동계의 등가모델을 구하였다. 이때 이너터의 크기에 따라 진동계의 동적특성이 결정되는 것을 보였다. 2자유도 진동계를 진동 흡진기로서 단일 모우드 소거에 적용하였을 경우의 흡진기 설계방법론을 구하였다. 비감쇠 진동흡진기의 경우 해석적인 방법론을 제시하였고, 하나의 감쇠기가 존재하는 경우 고정점법을 적용한 방법론을 소개하였다. 수치 예를 통해서 제시된 방법론을 검증하였다.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

기준궤적을 이용한 탄도수정탄 유도제어기 설계 (Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory)

  • 성재민;한유진;송민섭;김병수
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

ER 현수장치를 갖는 궤도차량의 $H_{\infty}$ 제어 ($H_{\infty}$ Control of a Tracked Vehicle with ER Suspension Units)

  • 한상수;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.251-256
    • /
    • 2000
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double-rod type ERSU(electro-rheological suspension unit). A 16 DOF(degree-of-freedom) model for the tracked vehicle is established by Lagrangian method. After showing the spring and damping characteristics of the proposed ERSU, equivalent 2 DOF 1/12 tracked vehicle model is then formulated by regarding the spring and viscous damping coefficients under the static state as constant values. A robust LSDP(loop-shaping design procedure) $H_{\infty}$ controller compensating spring and damping parameter variations is then designed in order to suppress unwanted vibration of the vehicle. The control responses such as vertical and pitch acceleration are presented in time domain.

  • PDF

유정압안내면의 동적 Modeling에 관한 연구 (A Study on the Dynamics Modeling of Hydrostatic tables)

  • 노승국;이찬흥;박천홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.643-647
    • /
    • 1996
  • The dynamic behavior of hydrostatic table is represented as the theoretical model, 1-dof, 2-dof rigid body spring-damper system, and finite element model. By the experimental and theoretical methods, the validity of these models and some other dynamic behaviors, such as the effects of unbalanced load and three dimensional motion, are investigated. To make easier to consider the dynamic behavior of hydrostatic table in design process, the stiffness and damping coefficients are calculated using the simple approximation method delived from the mass flow continuity condition, and compared with experimental results.

  • PDF

예측 제어기법을 이용한 기계 구주물의 능동 진동제어 (Active Structural Vibration Control using Forecasting Control Method)

  • 황요하
    • 소음진동
    • /
    • 제2권4호
    • /
    • pp.293-304
    • /
    • 1992
  • Active vibration control is presented with simulation and experiment. Dynamic Data System(DDS) method is used for system modeling and this model is combined with an forecasting control technique to derive a control equation. In the experiment, on-line digital computer monitors structural vibration and calculates control input. The control input is sent to an electromagnetic actuator which cancels the structural vibration. Experiment is performed first with a simple beam setup to demonstrate the effetiveness of this method. This method is then applied to a color laser printer to actively modify the structure. The beam experiment showed vibration reduction of over 60% with one-and two-DOF models. In the printer structure experiment, the first mode of 308 Hz was successfully controlled with a one-DOF model.

  • PDF

이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어 (Locomotion Control of Biped Robots with Serially-Linked Parallel Legs)

  • 윤정한;박종현
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.683-693
    • /
    • 2010
  • 본 논문은 2족 보행로봇을 위한 새로운 병렬메카니즘을 제안하고 있다. 각 다리는 3자유도를 갖는 병렬 플랫폼 2개가 시리얼로 연결되어 있는데, 허벅지와 정갱이 역할을 한다. 이 제안된 로봇을 위한 보행 궤적은 보행평면상에서는 중력보상역진자모드를 사용하여 구하였고, 횡방향으로는 역진자모드를 사용하여 구하였다. 지면으로부터의 반발력을 시뮬레이션하기 위해 발바닥 밑에 6자유도의 패드를 사용하였다. 제안된 메카니즘과 보행제어의 효율성은 SimMechanics를 이용한 12자유도 병렬 2족보행로봇의 시뮬레이션을 통해 입증하였다.