• 제목/요약/키워드: 2DOF

검색결과 659건 처리시간 0.034초

Joint Control Method Based on Internal Structure of 2DOF Control System

  • Yubai, K.;Suzuki, T.;Okuma, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.306-308
    • /
    • 1999
  • Recently 2DOF control system has been widely recognized to be efficient. The major merit of 2DOF control is the independency between tracking performance and feedback performance. But the design of two parameters of 2DOF control system is not much considered about the relation between the identification and the design. In the field of robust control, the joint control, which can combine the identification with the design, is investigated. Then are apply the joint control to the design of 2DOF control system, and verify the effectiveness by some simulation.

  • PDF

두 개의 플랫폼을 가지는 새로운 타입의 공간 4 자유도 병력기구의 조합 및해석 (Synthesis and Analysis of a New Class of Spatial4-DOF Parallel Mechanism with Two Platforms)

  • 윤정원;류제하
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1482-1487
    • /
    • 2003
  • This paper presents a new family of 4-DoF parallel mechanism with two platforms. The new mechanism is composed of front and rear platforms, and three limbs. Two limbs with 6dof joint (P-P-S-P) are attached to the each platform and are perpendicular to baseplate, while the middle limb with 4-Dof joints (R-R-R-P or R-R-P-P) is attached to the revolute joint that connect front and rear platform. The two-DoF-driving mechanism at the middle limb with two base-fixed prismatic actuators can generate the heaving and roll motions or two translational motions. Therefore, Therefore, the new 4-Dof parallel mechanism (1T-3R) can generate pitch motions at each platforms, roll, and heaving motions, while another type of new 4-Dof parallel mechanism (2T-2R) can generate pitch motions at each platforms, x and z translational motions. For 1T-3R mechanism, kinematic analyses including inverse, forward kinematics, and Jacobian are performed.

  • PDF

2자유도 PID 제어기의 RCGA기반 동조 (RCGA-Based Tuning of the 2DOF PID Controller)

  • 황승욱;송세훈;김정근;이윤형;이현식;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.948-955
    • /
    • 2008
  • The conventional PID controller has been widely employed in industry. However, the PID controller with one degree of freedom(DOF) can not optimize both set-point tracking response and disturbance rejection response at the same time. In order to solve this problem, a few types of 2DOF PID controllers have been suggested. In this paper, a tuning formula for a 2DOF PID controller is presented. The optimal parameter sets of the 2DOF PID controller are determined based on the first-order plus time delay process and a real-coded genetic algorithm(RCGA) such that the ITAE performance criterion is minimized. The tuning rule is then addressed using calculated parameter sets and another RCGA. A set of simulation works are carried out on three processes with time delay to verify the effectiveness of the proposed rule.

2-DOF 가공시스템의 채터로브 거동연구 (Characteristics of Chatter Stability Lobe in 2-DOF Machining System)

  • 이혁;진도훈;윤문철
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.1-7
    • /
    • 2019
  • A chatter lobe analysis is frequently used to look at the chatter state. Even if there is a lot of research on chatter, chatter lobe characteristics are not well defined. In this study, the chatter lobe behavior according to several variables of vibration mode is verified for further clarity. The dynamic variables of the chatter model are defined and their behaviors on chatter lobe boundary are analyzed in detail. In this sense, the chatter model with 2-DOF (2-DOF) was used to analyze chatter stability characteristics. The discussed results are satisfying and these can be used for the prediction of chatter existence in machining processes of 2-DOF systems in several revolution range. These analyses indicate a better agreement for predicting an appropriate stability lobe over a wide detailed range of critical depths of cut in machining operation. The results allow an excellent prediction of chatter according to various static and dynamic variables in machining states. The behavior of chatter dynamic variables in machining were also discussed in detail. All these results can also be applied to other machining processes by establishing a chatter model in a 2-DOF system.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot-2)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1539-1543
    • /
    • 2004
  • This paper describes platform overview, system integration and dynamic walking control of the humanoid robot, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. KHR-2 has totally 41 DOF (Degree Of Freedom). Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. In order to control all joints, distributed control architecture is adopted to reduce the computation burden of the main controller and to expand the devices easily. The main controller attached its back communicates with sub-controllers in real-time by using CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operating System) for fast development of main control program and easy extension of peripheral devices. And RTX, HAL(Hardware Abstraction Layer) extension program, is used to realize the real-time control in Windows XP environment. We present about real-time control of KHR-2 in Windows XP with RTX and basic walking control algorithm. Details of the KHR-2 are described in this paper.

  • PDF

확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발 (Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace)

  • 정성훈;김기성;곽경민;김한성
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

인간형 로봇 플랫폼 KHR-2 의 설계 및 하드웨어 집성 (Design and Hardware Integration of Humanoid Robot Platform KHR-2)

  • 김정엽;박일우;오준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.579-584
    • /
    • 2004
  • In this paper, we present the mechanical, electrical system design and system integration of controllers including sensory devices of the humanoid, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. Total number of DOF of KHR-2 is 41. Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. To control all axes efficiently, distributed control architecture is used to reduce computation burden of main controller and to expand devices easily. So we developed the sub-controller as a servo motor controller and a sensor interfacing devices using microprocessor. The main controller attached its back communicates with sub-controllers in real-time by CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operation System) for fast development of main control program and easy extension of peripheral devices. And RTX HAL extension commercial software is used to realize the real-time control in Windows XP environment.

  • PDF

3자유도 병렬형 마이크로 로봇 설계 (Design of 3 DOF Parallel Micro Robot)

  • 나흥열;이병주;서일홍;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.429-429
    • /
    • 2000
  • Micro positioning mechanism is the key technology in many fields, such as scanning electron microscopy (SEM), x-ray lithography, mask alignment and micro-machining. In the paper, a 3DOF parallel-type micro-positioning mechanism is proposed. This mechanism uses piezo-actuators and Flexure hinge to control x, y and $\theta$ motion. It is shown both analytically and numerically that 2 DOF flexure hinge model was better precision than 1 DOF flexure hinge design.

  • PDF