• Title/Summary/Keyword: 2D-3D 영상정합

Search Result 166, Processing Time 0.026 seconds

Registration System of 3D Footwear data by Foot Movements (발의 움직임 추적에 의한 3차원 신발모델 정합 시스템)

  • Jung, Da-Un;Seo, Yung-Ho;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.24-34
    • /
    • 2007
  • Application systems that easy to access a information have been developed by IT growth and a human life variation. In this paper, we propose a application system to register a 3D footwear model using a monocular camera. In General, a human motion analysis research to body movement. However, this system research a new method to use a foot movement. This paper present a system process and show experiment results. For projection to 2D foot plane from 3D shoe model data, we construct processes that a foot tracking, a projection expression and pose estimation process. This system divide from a 2D image analysis and a 3D pose estimation. First, for a foot tracking, we propose a method that find fixing point by a foot characteristic, and propose a geometric expression to relate 2D coordinate and 3D coordinate to use a monocular camera without a camera calibration. We make a application system, and measure distance error. Then, we confirmed a registration very well.

Registration of the 3D Range Data Using the Curvature Value (곡률 정보를 이용한 3차원 거리 데이터 정합)

  • Kim, Sang-Hoon;Kim, Tae-Eun
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.161-166
    • /
    • 2008
  • This paper proposes a new approach to align 3D data sets by using curvatures of feature surface. We use the Gaussian curvatures and the covariance matrix which imply the physical characteristics of the model to achieve registration of unaligned 3D data sets. First, the physical characteristics of local area are obtained by the Gaussian curvature. And the camera position of 3D range finder system is calculated from by using the projection matrix between 3D data set and 2D image. Then, the physical characteristics of whole area are obtained by the covariance matrix of the model. The corresponding points can be found in the overlapping region with the cross-projection method and it concentrates by removed points of self-occlusion. By the repeatedly the process discussed above, we finally find corrected points of overlapping region and get the optimized registration result.

  • PDF

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.

Separation of the Occluding Object from the Stack of 3D Objects Using a 2D Image (겹쳐진 3차원 물체의 2차원 영상에서 가리는 물체의 구분기법)

  • 송필재;홍민철;한헌수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • Conventional algorithms of separating overlapped objects are mostly based on template matching methods and thus their application domain is restricted to 2D objects and the processing time increases when the number of templates (object models) does. To solve these problems, this paper proposes a new approach of separating the occluding object from the stack of 3D objects using the relationship between surfaces without any information on the objects. The proposed algorithm considers an object as a combination of surfaces which are consisted with a set of boundary edges. Overlap of 3D objects appears as overlap of surfaces and thus as crossings of edges in 2D image. Based on this observation, the types of edge crossings are classified from which the types of overlap of 3D objects can be identified. The relationships between surfaces are represented by an attributed graph where the types of overlaps are represented by relation values. Using the relation values, the surfaces pertained to the same object are discerned and the overlapping object on the top of the stack can be separated. The performance of the proposed algorithm has been proved by the experiments using the overlapped images of 3D objects selected among the standard industrial parts.

Transformation of Stereoscopic Images for 3D Perception Improvement (입체영상의 3D 증강을 위한 입체영상 변환)

  • Gil, Jong In;Choi, Hwang Kyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.911-923
    • /
    • 2012
  • Recently, 3DTV and 3D displays have been released in the market. Accordingly, the production of stereoscopic images has gained much interest. Stereoscopic image being composed of left and right images are currently delivered to viewers without any modifications. The researches on the enhancement of depth perception using high-frequency components and the re-production of natural color by color compensation have been carried out for 2D images. The application of such 2D technologies to 3D stereoscopic images is an aim of this paper. This paper proposes the enhancement of 3D perception by color transformation. For this, we propose a stereo matching method for obtaining a depth map and two color transformation methods such as contrast transformation and background darkening. The effectiveness of the proposed method was verified through experiments.

Real-Time Stereo Matching of HD Video Using Graphics Hardware (그래픽 하드웨어를 이용한 HD 영상의 실시간 스테레오 정합)

  • Oh, Juhyun;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.35-38
    • /
    • 2011
  • 최근 3DTV 의 급격한 활성화로 스테레오 영상 콘텐츠 제작이 크게 증가하고 있다. 스테레오 영상은 일반 2D 영상과 달리 깊이(depth)가 존재하므로 자막과 같은 그래픽의 삽입에서 그 깊이를 반드시 고려해야 한다. 또한 시각피로를 줄이기 위해 스테레오 촬영 시 영상의 변이맵(disparity map)을 실시간 관찰할 필요성도 요구되고 있다. 본 논문에서는 최신의 그래픽 하드웨어를 이용하여 듀얼스트림 HD 영상을 실시간으로 스테레오 정합하는 방법을 제안한다.

  • PDF

An Automatic Matching between Video Frames and 3D Facial Model (동영상과 3차원 얼굴 모델이 자동 정합)

  • Lee, Jung;Kim, Chang-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.613-615
    • /
    • 2001
  • 본 논문은 동영상 내의 얼굴을 특정인 얼굴로 자동 변환 및 정합하는 기술을 제안한다. 얼굴에 나타난 동작이나 표정은 높은 자유도로 인하여 기존에 사용되어온 2차원적이고 고정된 물체 위주의 동영상 정합 기술로는 자연스러운 결과물을 얻기가 어렵다. 본 논문에서는 입력 받은 정면 유사방향의 사진으로부터 3차원 얼굴 모델을 복원한다. 각 프레임에 등장한 얼굴의 3차원 방향을 추출하여 복원한 3차원 얼굴 모델에 적용한 후 대체할 얼굴 영역에 저합시킨다. 정합 과정 시 비디오 프레임 내의 조명효과와 얼굴색 등을 분석하고 3차원 얼굴 모델에 블렌딩하여 비디오 프레임과 자연스럽게 정합할 수 있도록 한다.

  • PDF

Evaluation of the Interfraction Setup Errors using On Board- Imager (OBI) (On board imager를 이용한 치료간 환자 셋업오차 평가)

  • Jang, Eun-Sung;Baek, Seong-Min;Ko, Seung-Jin;Kang, Se-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2009
  • When using Image Guided Radiation Therapy, the patient is placed using skin marker first and after confirming anatomical location using OBI, the couch is moved to correct the set up. Evaluation for the error made at that moment was done. Through comparing $0^{\circ}$ and $270^{\circ}$ direction DRR image and OBI image with 2D-2D matching when therapy planning, comparison between patient's therapy plan setup and actual treatment setup was made to observe the error. Treatment confirmation on important organs such as head, neck and spinal cord was done every time through OBI setup and other organs such as chest, abdomen and pelvis was done 2 ~ 3 times a week. But corrections were all recorded on OIS so that evaluation on accuracy could be made through using skin index which was divided into head, neck, chest and abdomen-pelvis on 160 patients. Average setup error for head and neck patient on each AP, SI, RL direction was $0.2{\pm}0.2cm$, $-0.1{\pm}0.1cm$, $-0.2{\pm}0.0cm$, chest patient was $-0.5{\pm}0.1cm$, $0.3{\pm}0.3cm$, $0.4{\pm}0.2cm$, and abdomen was $0.4{\pm}0.4cm$, $-0.5{\pm}0.1cm$, $-0.4{\pm}0.1cm$. In case of pelvis, it was $0.5{\pm}0.3cm$, $0.8{\pm}0.4cm$, $-0.3{\pm}0.2cm$. In rigid body parts such as head and neck showed lesser setup error compared to chest and abdomen. Error was greater on chest in horizontal axis and in AP direction, abdomen-pelvis showed greater error. Error was greater on chest in horizontal axis because of the curve in patient's body when the setup is made. Error was greater on abdomen in AP direction because of the change in front and back location due to breathing of patient. There was no systematic error on patient setup system. Since OBI confirms the anatomical location, when focus is located on the skin, it is more precise to use skin marker to setup. When compared with 3D-3D conformation, although 2D-2D conformation can't find out the rolling error, it has lesser radiation exposure and shorter setup confirmation time. Therefore, on actual clinic, 2D-2D conformation is more appropriate.

  • PDF

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

Automatic Generation of 3D Face Model from Trinocular Images (Trinocular 영상을 이용한 3D 얼굴 모델 자동 생성)

  • Yi, Kwang-Do;Ahn, Sang-Chul;Kwon, Yong-Moo;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.104-115
    • /
    • 1999
  • This paper proposes an efficient method for 3D modeling of a human face from trinocular images by reconstructing face surface using range data. By using a trinocular camera system, we mitigated the tradeoff between the occlusion problem and the range resolution limitation which is the critical limitation in binocular camera system. We also propose an MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) area-based matching method to reduce boundary overreach phenomenon and to improve both of accuracy and precision in matching. In this method, the computing time can be reduced significantly by removing the redundancies. In the model generation sub-pixel accurate surface data are achieved by 2D interpolation of disparity values, and are sampled to make regular triangular meshes. The data size of the triangular mesh model can be controlled by merging the vertices that lie on the same plane within user defined error threshold.

  • PDF