• 제목/요약/키워드: 2D theory

Search Result 1,249, Processing Time 0.029 seconds

ISRI - Information Systems Research Constructs and Indicators: A Web Tool for Information Systems Researchers

  • Varajao, Joao;Trigo, Antonio;Silva, Tiago
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.54-67
    • /
    • 2021
  • This paper presents the ISRI (Information Systems Research Indicators) Web tool, publicly and freely available at isri.sciencesphere.org. Targeting Information Systems (IS) researchers, it compiles and organizes IS adoption and use theories/models, constructs, and indicators (measuring variables) available in the scientific literature. Aiming to support the IS theory development process, the purpose of ISRI is to gather and systematize information on research indicators to help researchers and practitioners' work. The tool currently covers eleven theories/models: DeLone and McLean's IS Success Model (D&M ISS); Diffusion of Innovations Theory (DOI); Motivational Model (MM); Social Cognitive Theory (SCT); Task-Technology Fit (TTF); Technology Acceptance Model (TAM); Technology-Organization-Environment Framework (TOE); Theory of Planned Behavior (TPB); Decomposed Theory of Planned Behavior (DTPB); Theory of Reasoned Action (TRA); and Unified Theory of Acceptance and Use of Technology (UTAUT). It also includes currently over 400 constructs, nearly 2,500 indicators, and about 60 application contexts related to the models. For the creation of the tool's database, nearly 580 references were used.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory

  • Huo, Ruili;Liu, Weiqing;Wu, Peng;Zhou, Ding
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.127-139
    • /
    • 2017
  • In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the permeation layer can effectively relieve the discontinuity stress at the interface.

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

Assessing Density Functional Theories to Compute the OH Stretching Frequencies of Water Molecules in Condensed Phases (응축상 물 분자의 OH 수축 진동수 계산을 위한 전자밀도 범함수 비교)

  • Kiyoung, Jeon;Mino, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.13-18
    • /
    • 2023
  • We evaluate electron density functional theories for the computation of 0-1 and 1-2 transition energies of local OH stretching motion of water molecules in condensed phases. By examining thirteen density functionals and nine sets of basis functions, it was found that the optimal combination that predicts the transition energies highly correlated with those calculated by the coupled cluster theory, CCSD(T), is the hybrid density functional theory developed by Head-Gordon group, ωB97X(D)/6-31+G*.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

Robust Control of a Glass Fiber Composite Beam using $\mu$-Synthesis Algorithm

  • Lee, Seong-cheol;Kwon, Tae-Kyu;Yun, Yeo-Hung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. $1^{st}$ and $2^{nd}$ natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by $H_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

Sectonal Forming Analysis of Stamping Processes of Aluminum Alloy Sheet Metals (알루미늄 합금 박판 스탬핑 공정의 단면 성형 해석)

  • 이광병;이승열;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.38-47
    • /
    • 1996
  • Sectional analysis program for plane strain or axisymmetric geometry of aluminum alloy sheet metals was developed. For modeling the anomalous behavior of aluminum alloy, Barlat's strain rate potential and Hill's 1990 non-quadratic yield theory arranged under the plane stress assumption were employed. 2-D rigid-viscoplastic FEM formulation based on the bending-augmented membrane theory was derived, solving simultaneously force equilibrium as well as non-penetration condition. Isotropic hardening law was also assumed for yielding behavior. To verify the validity and availability of the developed program, 2-D stretch/draw forming process for plane strain geometry and cylindrical cup deep drawing process for axisymmetric geometry were simulated.

  • PDF

Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method

  • Bambill, D.V.;Felix, D.H.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.231-245
    • /
    • 2010
  • Vibration analysis of rotating beams is a topic of constant interest in mechanical engineering. The differential quadrature method (DQM) is used to obtain the natural frequencies of free transverse vibration of rotating beams. As it is known the DQM offers an accurate and useful method for solution of differential equations. And it is an effective technique for solving this kind of problems as it is shown comparing the obtained results with those available in the open literature and with those obtained by an independent solution using the finite element method. The beam model is based on the Timoshenko beam theory.

A Study on the Relation Between SOLO Taxonomy and van Hele Theory (SOLO 분류법과 van Hiele의 기하학습 수준 이론의 관련성에 대한 고찰)

  • 류성림
    • The Mathematical Education
    • /
    • v.39 no.2
    • /
    • pp.151-166
    • /
    • 2000
  • The purpose of this study is to understand what two models of SOLO taxonomy and van Hiele theory suggest and find out what relation there is between the category system of the SOLO taxonomy and the thinking level of the van Hiele theory. The van Hiele theory describes in line of ranking level so that it may increase the teaching effects by putting together a class, which takes into consideration the students thoughts. The SOLO taxonomy focused on the response mode of the students rather than the thinking level or the developmental stage of them to pursuit the method that can describe the students understanding in depth quality-wise. Although the SOLO taxonomy and the van Hiele model seem to have different form and character from outside in terms of their goals, a closer examination reveals that the two stances have much in common and that the models are complementary. Although the van Hiele placed more focus on the thoughts, because the conclusion was based on the students responses, the van Hiele theory can be interpreted within the structure identified in the SOLO model. In this study, we have tried to understand how the response structure form the SOLO taxonomy and the thinking level of the van Hiele theory are related, based on the studies of Pegg and Davery1998). If you briefly look at them, there are following corresponding relation between the SOLO taxonomy and the van Hiele theory. a) The relational level(R) in iconic moe is van Hiele level 1. b) The multisturctural level(M$_2$) in the second cycle of concrete-symbolic mode is van Hiel level 2. c) The relation level(R$_2$) in the second cycle of concrete-symbolic mode is van Hiele level 3. d) The unistructural level(U$_2$) in the second cycle of formal mode is van Hiele level 4. e) The postformal mode is van Hiele levle 5. Though it would be difficult to conclude that these correspondences were perfectly done, if you look at their relation, you can see that the learning process of the students were not carried out uniformly. Therefore, by studying the students response structure, using the SOLO taxonomy, and identifying the learning cycle and understand the geometrical concept more in depth.

  • PDF