Browse > Article

ISRI - Information Systems Research Constructs and Indicators: A Web Tool for Information Systems Researchers  

Varajao, Joao (University of Minho, Centro ALGORITMI)
Trigo, Antonio (Polytechnic Institute of Coimbra, ISCAC, Coimbra Business School, University of Minho, Centro ALGORITMI)
Silva, Tiago (University of Minho, MIEGSI)
Publication Information
Journal of Information Science Theory and Practice / v.9, no.1, 2021 , pp. 54-67 More about this Journal
This paper presents the ISRI (Information Systems Research Indicators) Web tool, publicly and freely available at Targeting Information Systems (IS) researchers, it compiles and organizes IS adoption and use theories/models, constructs, and indicators (measuring variables) available in the scientific literature. Aiming to support the IS theory development process, the purpose of ISRI is to gather and systematize information on research indicators to help researchers and practitioners' work. The tool currently covers eleven theories/models: DeLone and McLean's IS Success Model (D&M ISS); Diffusion of Innovations Theory (DOI); Motivational Model (MM); Social Cognitive Theory (SCT); Task-Technology Fit (TTF); Technology Acceptance Model (TAM); Technology-Organization-Environment Framework (TOE); Theory of Planned Behavior (TPB); Decomposed Theory of Planned Behavior (DTPB); Theory of Reasoned Action (TRA); and Unified Theory of Acceptance and Use of Technology (UTAUT). It also includes currently over 400 constructs, nearly 2,500 indicators, and about 60 application contexts related to the models. For the creation of the tool's database, nearly 580 references were used.
information systems adoption; information systems success; information systems theories; information systems models; information systems measuring variables; information systems scales;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.   DOI
2 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.   DOI
3 Venkatesh, V., & Speier, C. (1999). Computer technology training in the workplace: A longitudinal investigation of the effect of mood. Organizational Behavior and Human Decision Processes, 79(1), 1-28.   DOI
4 Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Prentice-Hall.
5 Yao, Y., & Murphy, L. (2007). Remote electronic voting systems: An exploration of voters' perceptions and intention to use. European Journal of Information Systems, 16(2), 106-120.   DOI
6 Oliveira, T., & Martins, M. F. (2010, September 9-10). Information technology adoption models at firm level: Review of literature. In M. de Castro Neto (Ed.), Proceedings of the 4th European Conference on Information Management and Evaluation (ECISME 2010) (pp. 312-323). Academic Publishing.
7 DeLone, W. H., & McLean, E. R. (2016). Information systems success measurement. Foundations and Trends® in Information Systems, 2(1), 1-116.   DOI
8 Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1), 9-21.   DOI
9 Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.   DOI
10 Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.   DOI
11 Patnayakuni, R., & Ruppel, C. P. (2010). A socio-technical approach to improving the systems development process. Information Systems Frontiers, 12(2), 219-234.   DOI
12 Ramdani, B., & Kawalek, P. (2007, June 14-16). SME adoption of enterprise systems in the Northwest of England. In T. McMaster, D. Wastell, E. Ferneley, & J. I. DeGross (Eds.), Organizational dynamics of technology-based innovation: Diversifying the research agenda. TDIT 2007 (pp. 409-429). Springer.   DOI
13 Rana, N. P., & Dwivedi, Y. K. (2015). Citizen's adoption of an e-government system: Validating extended social cognitive theory (SCT). Government Information Quarterly, 32(2), 172-181.   DOI
14 Compeau, D., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.   DOI
15 Alam, M. Z., Hoque, M. R., Hu, W., & Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128-143.   DOI
16 Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.
17 Bandura, A. (2012). Social cognitive theory. In P. A. M. Van Lange, A. W. Kruglanski, & E. T. Higgins (Eds.), Handbook of theories of social psychology (pp. 349-374). Sage.
18 Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.   DOI
19 Estriegana, R., Medina-Merodio, J.-A., & Barchino, R. (2019). Student acceptance of virtual laboratory and practical work: An extension of the technology acceptance model. Computers & Education, 135, 1-14.   DOI
20 Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley.
21 Kaariainen, J., Pussinen, P., Saari, L., Kuusisto, O., Saarela, M., & Hanninen, K. (2020). Applying the positioning phase of the digital transformation model in practice for SMEs: Toward systematic development of digitalization. International Journal of Information Systems and Project Management, 8(4), 24-43.   DOI
22 Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.   DOI
23 D'Ambra, J., Wilson, C. S., & Akter, S. (2013). Application of the task-technology fit model to structure and evaluate the adoption of E-books by academics. Journal of the American Society for Information Science and Technology, 64(1), 48-64.   DOI
24 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.   DOI
25 DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.   DOI
26 DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A tenyear update. Journal of Management Information Systems, 19(4), 9-30.   DOI
27 Rogers, E. M. (1962). Diffusion of innovations. Free Press of Glencoe.
28 Rogers, E. M. (1983). Diffusion of innovations (3rd ed). Free Press.
29 Rogers, E. M. (1995). Diffusion of innovations (4th ed). Free Press.
30 Sommerville, I. (2007). Software engineering (8th ed). Addison-Wesley.
31 Swanson, E. B. (1994). Information systems innovation among organizations. Management Science, 40(9), 1069-1092.   DOI
32 Taylor, S., & Todd, P. (1995a). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.   DOI
33 Taylor, S., & Todd, P. (1995b). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137-155.   DOI
34 Taylor, S., & Todd, P. (1995c). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.   DOI
35 Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.
36 Varajao, J. (2018). The many facets of information systems (+projects) success. International Journal of Information Systems and Project Management, 6(4), 5-13.   DOI
37 Varajao, J., & Trigo, A. (2016, December 11-14). Evaluation of IS project success in InfSysMakers: An exploratory case study. 37th International Conference on Information Systems (ICIS 2016) (pp. 1-10). Association for Information Systems.
38 Davis, F. D. Jr. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (PhD thesis). Massachusetts Institute of Technology, Cambridge, MA, USA.
39 Rogers, E. M. (2003). Diffusion of innovations (5th ed). Free Press.
40 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.   DOI
41 Mishra, D., Akman, I., & Mishra, A. (2014). Theory of reasoned action application for green information technology acceptance. Computers in Human Behavior, 36, 29-40.   DOI
42 Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl, & J. Beckmann (Eds.), Action control: From cognition to behavior (pp. 11-39). Springer.
43 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.   DOI