• Title/Summary/Keyword: 2D scanner

Search Result 403, Processing Time 0.024 seconds

Comparison of finite element analysis of the closing patterns between first and second premolar extraction spaces (상악 제1 및 제2소구치의 발치공간 폐쇄기전에 대한 3차원 유한요소 해석의 비교 연구)

  • Koh, Shin-Ae;Im, Won-Hee;Park, Sun-Hyung;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.407-420
    • /
    • 2007
  • The aim of this study was to compare the differences in closing extraction spaces between maxillary first premolar and second premolar extractions using 3-dimensional finite element analysis (FEA). Methods: Maxillary artificial teeth were selected according to Wheeler's dental anatomy. The size and shape of each tooth, bracket and archwire were made from captured real images by a 3D laser scanner and FEA was performed with a 10-noded tetrahedron. A $10^{\circ}$ gable bend was placed behind the bull loop on a $0.017"{\times}0.025"$ archwire. The extraction space was then closed through 12 repeated activating processes for each 2mm of space. Results and Conclusions: The study demonstrated that the retraction of anterior teeth was less for the second premolar extraction than for the first premolar extraction. The anterior teeth showed a controlled tipping movement with slight extrusion, and the posterior teeth showed a mesial-in rotational movement. For the second premolar extraction, buccal movement of posterior teeth was highly increased.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.

Time Change in Spatial Distributions of Light Interception and Photosynthetic Rate of Paprika Estimated by Ray-tracing Simulation (광 추적 시뮬레이션에 의한 시간 별 파프리카의 수광 및 광합성 속도 분포 예측)

  • Kang, Woo Hyun;Hwang, Inha;Jung, Dae Ho;Kim, Dongpil;Kim, Jaewoo;Kim, Jin Hyun;Park, Kyoung Sub;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • To estimate daily canopy photosynthesis, accurate estimation of canopy light interception according to a daily solar position is needed. However, this process needs a lot of cost, time, manpower, and difficulty when measuring manually. Various modeling approaches have been applied so far, but it was difficult to accurately estimate light interception by conventional methods. The objective of this study is to estimate the spatial distributions of light interception and photosynthetic rate of paprika with time by using 3D-scanned plant models and optical simulation. Structural models of greenhouse paprika were constructed with a portable 3D scanner. To investigate the change in canopy light interception by surrounding plants, the 3D paprika models were arranged at $1{\times}1$ and $9{\times}9$ isotropic forms with a distance of 60 cm between plants. The light interception was obtained by optical simulation, and the photosynthetic rate was calculated by a rectangular hyperbola model. The spatial distributions of canopy light interception of the 3D paprika model showed different patterns with solar altitude at 9:00, 12:00, and 15:00. The total canopy light interception decreased with an increase of surrounding plants like an arrangement of $9{\times}9$, and the decreasing rate was lowest at 12:00. The canopy photosynthetic rate showed a similar tendency with the canopy light interception, but its decreasing rate was lower than that of the light interception due to the saturation of photosynthetic rate of upper leaves of the plants. In this study, by using the 3D-scanned plant model and optical simulation, it was possible to analyze the light interception and photosynthesis of plant canopy under various conditions, and it can be an effective way to estimate accurate light interception and photosynthesis of plants.

A Estimation of Soil Conversion Factor Using Digital Photogrammetry and 3D Laser Scanner (디지털사진측량 및 3D 레이저스캐너를 이용한 토랑환산계수의 산정)

  • Lee Jae-Kee;Jung Sung-Heuk;Lee Kye-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.227-234
    • /
    • 2006
  • Ministry of construction & transportation is operating for the soil and rock information system and is considered to accurate application of soil conversion factor that is essentially necessary for accurate calculation of earth volume. Since the balance of cutting earth in public work, the plan of spoil bank or borrow pit are directly related to construction costs, accurate calculation of earth volume and efficient scheme of haul are important. As such, this study has provided methods that can acquire information that is more rapid, applicable to job sites, and trustworthy by comparing resultant values of photogrammetry, laser scanning, or inside job site experimentations, and calculated soil conversion factor by applying photogrammetry and laser scanning methods for hard rock that has difficulty in calculating soil conversion factor. The study can provide alternatives that can resolve the problems of unbalanced earth volume that may arise in applying to plans the earth conversion factor that relies on planning books and experience without considering the characteristics of job site earth, and can establish its relevancy by calculating soil conversion factor for hard rock that has relative difficulties in doing inside or job site testing.

A STUDY ON THE RELATIONS OF VARIOUS PARTS OF THE PALATE FOR PRIMARY AND PERMANENT DENTITION (유치열과 영구치열의 구개 각부의 관계에 관한 연구)

  • Lee, Yong-Hoon;Yang, Yeon-Mi;Lee, Yong-Hee;Kim, Sang-Hoon;Kim, Jae-Gon;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.569-578
    • /
    • 2004
  • The purpose of this study was to clarify the palatal arch length, width and height in the primary and permanent dentition. Samples were consisted of normal occlusions both in the primary dentition(50 males and 50 females) and in the permanent dentition(50 males and 50 females). With their upper plaster casts were used and through 3-dimensional laser scanning(3D Scanner, DS4060, LDI, U.S.A.), cloud data, polygonization, section curve and loft surface, fit and horizontal plane were based to measure the palatal arch length, width and height(Surfacer 10.0, Imageware, U.S.A.). T-tests were applied for the statistical analyze of the data. The results were as follows : 1. In the measurement values, the values of the male were higher than those of the female except primary anterior palatal height. There were not only statistically significant differences in anterior palatal width(p<0.05) and posterior palatal width(p<0.01) in primary dentition but palatal width(p<0.05), anterior palatal length(p<0.01), middle and posterior palatal length(p<0.05) in permanent dentition between male and female. 2. In the indices of palate, there were statistically significant differences in height-length index(p<0.05) and width-length index(p<0.01) between male and female in primary dentition. In permanent dentition, there was statistically difference between male and female. 3. In the measurement values, posterior palatal width was increased most greatly. Posterior palatal height, anterior palatal width and anterior palatal length were followed by descending order. On the other hand, anterior palatal height and posterior palatal length were decreased. 4. In the indices of palate, the height-length index, the width-length index and posterior height-width index were increased, but the others were decreased.

  • PDF

Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers (다중 섬광결정을 이용한 고해상도 PET의 불균일/불완전 데이터 보정기법 연구)

  • Lee, Jae-Sung;Kim, Soo-Mee;Lee, Kwon-Song;Sim, Kwang-Souk;Rhe, June-Tak;Park, Kwang-Suk;Lee, Dong-Soo;Hong, Seong-Jong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Purpose: To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Materials and Methods: Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 20 filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Results: Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conclusion: Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 20 reconstruction of multiple crystal layer PET data.

Accuracy in target localization in stereotactic radiosurgery using diagnostic machines (정위적 방사선수술시 진단장비를 이용한 종양위치결정의 정확도 평가)

  • 최동락
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.3-7
    • /
    • 1996
  • The accuracy in target localization of CT, MR, and digital angiography were investigated for stereotactic radiosurgery. The images using CT and MR were obtained out of geometrical phantom which was designed to produce exact coordinates of several points within a 0.lmm error range. The slice interval was 3mm and FOV was 35cm for CT and 28cm for MR. These images were transferred to treatment planning computer using TCP/IP in forms of GE format. Measured 3-D coordinates of these images from planning computer were compared to known values by geometrical phantom. Anterior-posterior and lateral films were taken by digital angiography for measurement of spatial accuracy. Target localization errors were 1.2${\pm}$0.5mm with CT images, 1.7${\pm}$0.4mm with MR-coronal images, and 2.1${\pm}$0.7mm with MR-sagittal images. But, in case of MR-axial images, the target localization error was 4.7${\pm}$0.9mm. Finally, the target localization error of digital angiography was 0.9${\pm}$0.4mm. The accuracy of diagnostic machines such as CT, MR, and angiography depended on their resolutions and distortions. The target localization error mainly depended on the resolution due to slice interval with CT and the image distortion as well as the resolution with MR However, in case of digital angiography, the target localization error was closely related to the distortion of fiducial markers. The results of our study should be considered when PTV (Planning Target Volume) was determined.

  • PDF

Evaluation of Dose Distribution Using Gafchromic $EBT^{(R)}$ Film (Gafchromic $EBT^{(R)}$ 필름을 이용한 선량분포의 평가)

  • Kang, Se-Sik;Ko, Seong-Jin;Jang, Eun-Sung
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Dose evaluation for small field such as stereotactic radiosurgery was performed using $Gafchromic^{(R)}$ EBT film. Every film which irradiated 6MV photon beam was scanned and obtained the optical density(OD) by flat bed scanner after 24 hours of irradiation. This study compared dose from diode in water and Gafchromic $EBT^{(R)}$ film in acrylic phantom to verify the reliability of the film, and to evaluate the SRS in clinical dose distributions from calculation and measurement in the region of virtual target in humanoid and cylindrical phantoms were compared. The Gafchromic $EBT^{(R)}$ film was found to be linear up to 9Gy. The $D_{max}$ for 6 MV was measured at 1.5 cm from the surface by both of diode and the film. As the depth is deeper, the error was measured within $2{\sim}3%$ at $10{\sim}20\;cm$ depth. Comparing between distribution from calculation and measurement, we found that there is 5% error at 90% isodose line. We found that given dose could be measured accurately by using the phantoms. It was feasible to use the Gafchromic $EBT^{(R)}$ film in quality assurance of SRS.

  • PDF

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

The accuracy evaluation of digital surgical stents according to supported type (디지털 수술용 가이드의 지지타입에 따른 정확도 평가)

  • Lee, Junyoun;Yoon, Minho;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.1
    • /
    • pp.8-16
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the accuracy of surgical stent according to the supported type. Materials and methods: 5 sets of dental models which have tooth supported edentulous area and tooth-tissue supported edentulous area were made. Dental model were scanned with model scanner, and CBCT was taken. CT data and model scan data were overlapped using In2Guide software, implant were virtually planned in the software. Surgical stents are fabricated by 3D printing. The implant fixture were installed using the surgical stent, CBCT were retaken. CBCT before surgery and after surgery were overlapped, and the differences (angle difference, coronal difference, apical difference) were evaluated using statistical analysis. Results: In the assessment of the accuracy of surgical guides according to arch type, there are no statistically significant differences between maxilla and mandible. In the case of support type, tooth supported stents showed lower angle difference and length difference than tooth-tissue supported stents, which are statistically significant. Conclusion: Arch type does not affect the accuracy of surgical stents. But tooth support stents are more accurate than tooth-tissue support stents in the case of angle and length difference.