• Title/Summary/Keyword: 2D moving target

Search Result 73, Processing Time 0.029 seconds

2D Spatial-Map Construction for Workers Identification and Avoidance of AGV (AGV의 작업자 식별 및 회피를 위한 2D 공간 지도 구성)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.347-352
    • /
    • 2012
  • In this paper, an 2D spatial-map construction for workers identification and avoidance of AGV using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth map can be detected. From some experiments on AGV driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the worker's width is found to be very low value of 2.19% and 1.52% on average.

Real-time Measurement and Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 측정 및 보상)

  • 오정석;배은덕;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.288-291
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement

  • PDF

Real-time Compensation of Motion Errors Using Extended Twyman-Green Interferometry (확장 트와이만-그린 간섭계를 이용한 운동 오차의 실시간 보상)

  • 배은덕;오정석;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents an extended Twyman-Green interferometry that enables simultaneous and real-time measurement of 5-DOF motion errors of the translational moving stage. This method uses a null balancing technique in which two plane mirrors are used as target mirrors to generate an interferometric fringe utilizing the optical principles of Twyman-Green interferometry. Fringe is detected by 2D photodiode array for high-speed measurement. Errors are then independently suppressed by activation of piezoelectric actuators through real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with motion errors about 10 nm in linear displacement, 0.15 arcsec in angular displacement.

Adaptive Spatial Coordinates Detection Scheme for Path-Planning of Autonomous Mobile Robot (자율 이동로봇의 경로추정을 위한 적응적 공간좌표 검출 기법)

  • Lee, Jung-Suk;Ko, Jung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a intelligent path planning of an automatic mobile robot is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity mad obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene. and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation.

A Study of Attention-Induced Design Dimension Relating to Optimal Cognitive Performance Interface Development for Mentally Retarded Disorders (정신지체인의 최적 인지수행 인터페이스 구성을 위한 주의집중 관련 디자인 차원 연구)

  • 신수길;민윤기;이강희;한건환
    • Archives of design research
    • /
    • v.14 no.4
    • /
    • pp.189-198
    • /
    • 2001
  • This study was to identify HCl design factors for increasing information processing and attention for mentally retarded children. Several factors such as size, location, moving distance were varied for three experiments operated by the amount of information. The results showed that the larger size of target, the greater moving distance of target, and the less amount of information increased mentally retarded children's sensitivity. Also, when the target was displayed at upper left of computer screen, sensitivity of mentally retarded children was high, compared other locations of screen.

  • PDF

A study on the Development of Frequency Modulated Continuous Wave Radar for Distance Measurement (거리 측정용 주파수 변조 연속파 레이더 개발에 관한 연구)

  • Park, Dong-Kook;Han, Tae-Kyoung;Lee, Hyun-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1005-1010
    • /
    • 2005
  • In this paper, it is presented a frequency modulated continuous wave radar (FMCW) for distance measurement. The frequency range is $10{\sim}11$ GHz and the sweep time of the signal is 100 ms. The test target is 0.8 m2 of metal plate. The experiment is performed in open ground and the pyramidal horn antenna of about 22 dBi gain is used. The beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is not good such as about 10 cm. It is result from the nonlinear signal of voltage controlled oscillator (VCO). To improve the nonlinear characteristic of VCO, a high pass filter and phase locked loop (PLL) frequency synthesizer are included in the radar system.

  • PDF

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

Impact of the Respiratory Motion and Longitudinal Profile on Helical Tomotherapy

  • Park, So Hyun;Choi, Jinhyun;Kim, JinSung;Ahn, Sohyun;Kim, Min Joo;Lee, Ho;Choi, Seo Hee;Park, Kwangwoo
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The $TomoTherapy^{(R)}$ beam-delivery method creates helical beam-junctioning patterns in the dose distribution within the target. In addition, the dose discrepancy results in the particular region where the resonance by pattern of dose delivery occurs owing to the change in the position and shape of internal organs with a patient's respiration during long treatment times. In this study, we evaluated the dose pattern of the longitudinal profile with the change in respiration. The superior-inferior motion signal of the programmable respiratory motion phantom was obtained using AbChes as a four-dimensional computed tomography (4DCT) original moving signal. We delineated virtual targets in the phantom and planned to deliver the prescription dose of 300 cGy using field widths of 1.0 cm, 2.5 cm, and 5.0 cm. An original moving signal was fitted to reflecting the beam delivery time of the $TomoTherapy^{(R)}$. The EBT3 film was inserted into the phantom movement cassette, and static, without the movement and with the original movement, was measured with signal changes of 2.0 s, 4.0 s, and 5.0 s periods, and 2.0 mm and 4.0 mm amplitudes. It was found that a dose fluctuation within ${\pm}4.0%$ occurred in all longitudinal profiles. Compared with the original movement, the region of the gamma index above 1 partially appeared within the target and the border of the target when the period and amplitude were changed. Gamma passing rates were 95.00% or more. However, cases for a 5.0 s period and 4.0 mm amplitude at a field width of 2.5 cm and for 2.0 s and 5.0 s periods at a field width of 5.0 cm have gamma passing rates of 92.73%, 90.31%, 90.31%, and 93.60%. $TomoTherapy^{(R)}$ shows a small difference in dose distribution according to the changes of period and amplitude of respiration. Therefore, to treat a variable respiratory motion region, a margin reflecting the degree of change of respiration signal is required.

A WEB-BASED PROJECT MANAGEMENT SYSTEM FOR GOVERNMENT R&D PROGRAMS (국가 연구개발을 위한 웹기반의 과제관리 시스템)

  • 손권중
    • Proceedings of the Technology Innovation Conference
    • /
    • 2003.06a
    • /
    • pp.108-115
    • /
    • 2003
  • Government R&D Project Management in Korea has had considerable difficulties because of the lack of project monitoring systems and insufficient communication. The National Program for Tera-level Nanodevices (TND Program) is a ten-year R&D program for commercialization in the area of nano technology. Collaboration and communication among the various participants such as business companies, universities, and government R&D institutes are key success factors in this R&D program. TND Program office has developed a Web-based project management system. This system consists of mostly four sub-management functions: (1) Milestones management of all R&D projects; (2) DR (Design Review) management as the mechanism for checking the performance against milestones; (3) Project activity management using the WBS (Work Breakdown Structure); (4) Budget management. Additionally, it also has many R&D supporting functions such as technology information bulletin board, community management, and visual summary of project progress and performance. This system is effective for monitoring research project as well as measuring project performance of the overall research program. This Web-based system has become the useful tool of R&D moving target mechanism and effective communication and collaboration tool. System features and adoption process of the system are also suggested.

  • PDF

Height and Position Estimation of Moving Objects using a Single Camera

  • Lee, Seok-Han;Lee, Jae-Young;Kim, Bu-Gyeom;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.158-163
    • /
    • 2009
  • In recent years, there has been increased interest in characterizing and extracting 3D information from 2D images for human tracking and identification. In this paper, we propose a single view-based framework for robust estimation of height and position. In the proposed method, 2D features of target object is back-projected into the 3D scene space where its coordinate system is given by a rectangular marker. Then the position and the height are estimated in the 3D space. In addition, geometric error caused by inaccurate projective mapping is corrected by using geometric constraints provided by the marker. The accuracy and the robustness of our technique are verified on the experimental results of several real video sequences from outdoor environments.

  • PDF