• Title/Summary/Keyword: 2D inundation model

Search Result 89, Processing Time 0.023 seconds

Flood Inundation Analysis from Levee Failure in Nakdong River (낙동강 제방 붕괴에 따른 범람홍수 해석)

  • Jeon, Min-Woo;Han, Kun-Yeun;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.259-269
    • /
    • 2005
  • One- and two-dimensional coupling model has been developed to analyze the flood inundation aspect of protected lowland. One-dimensional model solves the Saint-Venant equations by the Preissmann method, and two-dimensional model solves the shallow water equation by the integrated finite difference method. The coupling model approximates unsteady supercritical and subcritical flow, backwater flooding effects, and escaping and returning flow from two-dimensional flow model to channel system. The model has been applied to the levee failure in the Nakdong river during September 13 through 15, 2000. Velocity distributions and inundated depths were presented to demonstrate model simulation results.

Two-Dimensional(2-D) Flood Inundation Modeling Considering Mesh Type and Resolution (격자유형과 해상도를 고려한 2차원 홍수범람 모델링)

  • Kim, Byunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2019
  • In this study, 2-D Godunov type finite volume model which can apply the mixed mesh including triangular and quadrilateral meshes for flood inundation modeling is used to compare and analyze the flood height, flood extent and model execution time according to mesh type and resolution. The study area is the Upton-upon Severn watershed in Great Britain, where the flood occurred for 22 days from October 29 to November 19, 2000. For the flood modeling, topographic data were constructed using high resolution LiDAR (Light Detection And Ranging). The results of the 2-D flood modeling by the mesh type and resolution were compared with four ASAR (Airborne Synthetic Aperture Radar) images captured during the flood period. This study has shown that flood height and extent can vary greatly depending on the mesh type and resolution, even if identical topography and boundary conditions are used, and that the selection of appropriate mesh type and resolution for the purpose and situation of the 2-D flood modeling is necessary.

A Study on Numerical Simulation of Flood Inundation in a Coastal Urban Areas: Application to Gohyun River in Geoje City, Kyungnam Province (해안도시지역 홍수범람모의에 관한 연구: 경상남도 거제시 고현천 적용사례)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1093-1105
    • /
    • 2012
  • In this study, the simulations and analyses of flood flow due to a river inundation in a coastal urban area are carried out using a two-dimensional finite volume model with well-balanced HLLC scheme. The target area is a coastal urban area around Gohyun river which is located at Geoje city in Kyungnam province and was extremely damaged due to the heavy rainfall during the period of the typhoon "Maemi" in September 2003. For the purpose of the verification of the numerical model applied in this study, the simulated results are compared and analyzed with the inundation traces. In addition, the flood flow in an urban area is simulated and analyzed according to the scenarios of inflow variation due to the increase and decrease of the intensity of the heavy rainfall, which.

Development of integrated disaster mapping method (I) : expansion and verification of grid-based model (통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증)

  • Park, Jun Hyung;Han, Kun-Yeun;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.71-84
    • /
    • 2022
  • The objective of this study is to develop a two-dimensional (2D) flood model that can perform accurate flood analysis with simple input data. The 2D flood inundation models currently used to create flood forecast maps require complex input data and grid generation tools. This sometimes requires a lot of time and effort for flood modeling, and there may be difficulties in constructing input data depending on the situation. In order to compensate for these shortcomings, in this study, a grid-based model that can derive accurate and rapid flood analysis by reflecting correct topography as simple input data was developed. The calculation efficiency was improved by extending the existing 2×2 sub-grid model to a 5×5. In order to examine the accuracy and applicability of the model, it was applied to the Gamcheon Basin where both urban and river flooding occurred due to Typhoon Rusa. For efficient flood analysis according to user's selection, flood wave propagation patterns, accuracy and execution time according to grid size and number of sub-grids were investigated. The developed model is expected to be highly useful for flood disaster mapping as it can present the results of flooding analysis for various situations, from the flood inundation map showing accurate flooding to the flood risk map showing only approximate flooding.

Development of Inundation Flooding Simulation Program for Selecting Optimum Installation Site for Rainwater Infiltration Detention Block (빗물침투저류블록의 설치 최적지 선정을 위한 침수범람 시뮬레이션 프로그램의 개발)

  • Kim, Seongpyo;Lee, Taegyo;Ryu, Jungrim;Park seonmee;Choi, Heeyong;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.129-130
    • /
    • 2023
  • This study proposes rainwater infiltration retention blocks as a solution to the flooding problems caused by recent climate change and developed a flood prediction simulation program to select the optimal site for installing rainwater infiltration retention blocks that can minimize damage from floods. By applying the existing 2D flood analysis model G2D and adding a reservoir function, the volume of water before and after installation can be determined through simulation results.

  • PDF

Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menu-driven software (LAHARZ)to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.

Real-Time Forecast of Rainfall Impact on Urban Inundation (강우자료와 연계한 도시 침수지역의 사전 영향예보)

  • KEUM, Ho-Jun;KIM, Hyun-Il;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.76-92
    • /
    • 2018
  • This study aimed to establish database of rainfall inundation area by rainfall scenarios and conduct a real time prediction for urban flood mitigation. the data leaded model was developed for the mapping of inundated area with rainfall forecast data provided by korea meteorological agency. for the construction of data leaded model, 1d-2d modeling was applied to Gangnam area, where suffered from severe flooding event including september, 2010. 1d-2d analysis result agree with observed in term of flood depth. flood area and flood occurring report which maintained by NDMS(national disaster management system). The fitness ratio of the NDMS reporting point and 2D flood analysis results was revealed to be 69.5%. Flood forecast chart was created using pre-flooding database. It was analyzed to have 70.3% of fitness in case of flood forecast chart of 70mm, and 72.0% in case of 80mm flood forecast chart. Using the constructed pre-flood area database, it is possible to present flood forecast chart information with rainfall forecast, and it can be used to secure the leading time during flood predictions and warning.

Large scale flood inundation of Cambodia, using Caesar lisflood

  • Sou, Senrong;Kim, Joo-Cheol;Lee, Hyunsoek;Ly, Sarann;Lee, Giha;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.211-211
    • /
    • 2015
  • Mekong River is the world's $10^{th}$ longest river and runs through China's Yunnan province, Burma, Thailand, Laos, Cambodia and Vietnam. And Tonle Sap Lake, the largest fresh water body in Southeast Asia and the heart of Mekong River system, covers an area $2,500-3,000Km^2$ in dry season and $10,000-16,000Km^2$ in wet season. As previously noted, the water within Sap river flows from the Mekong River to Tonle Sap Lake in flood season (between June and October) and backward to Mekong River in dry season. Recently the flow regime of Sap River might be significantly affected by the development of large dams in upstream region of Mekong River. This paper aims at basic study about the large scale flood inundation of Cambodia using by CAESAR-Lisflood. CAESAR-Lisflood is a geomorphologic / Landscape evolution model that combines the Lisflood-FP 2d hydrodynamic flow model (Bates et al, 2010) with the CAESAR geomorphic model to simulate flow hydrograph and erosion/deposition in river catchments and reaches over time scales from hours to 1000's of years. This model is based on the simplified full Saint-Venant Equation so that it can simulate the interacted flow of between Mekong River and Tonle Sap Lake especially focusing on the flow direction change of Sap River by season.

  • PDF

Application of Flood Prevention Measures Using Detailed Topographic Data of River and Lowland (하천-제내지의 상세 지형자료를 이용한 수해방지대책 적용)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KEUM, Ho-Jun;KO, Hyun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2020
  • Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.