• Title/Summary/Keyword: 2D imaging

Search Result 1,143, Processing Time 0.03 seconds

Three-Dimensional Imaging and Display through Integral Photography

  • Navarro, Hector;Dorado, Adrian;Saavedra, Genaro;Corral, Manuel Martinez
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Here, we present a review of the proposals and advances in the field of three-dimensional (3D) imaging acquisition and display made in the last century. The most popular techniques are based on the concept of stereoscopy. However, stereoscopy does not provide real 3D experience, and produces discomfort due to the conflict between convergence and accommodation. For this reason, we focus this paper on integral imaging, which is a technique that permits the codification of 3D information in an array of 2D images obtained from different perspectives. When this array of elemental images is placed in front of an array of microlenses, the perspectives are integrated producing 3D images with full parallax and free of the convergence-accommodation conflict. In the paper we describe the principles of this technique, together with some new applications of integral imaging.

Accuracy and reliability of 2-dimensional photography versus 3-dimensional soft tissue imaging

  • Ayaz, Irem;Shaheen, Eman;Aly, Medhat;Shujaat, Sohaib;Gallo, Giulia;Coucke, Wim;Politis, Constantinus;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Purpose: This study was conducted to objectively and subjectively compare the accuracy and reliability of 2-dimensional(2D) photography and 3-dimensional(3D) soft tissue imaging. Materials and Methods: Facial images of 50 volunteers(25 males, 25 females) were captured with a Nikon D800 2D camera (Nikon Corporation, Tokyo, Japan), 3D stereophotogrammetry (SPG), and laser scanning (LS). All subjects were imaged in a relaxed, closed-mouth position with a normal smile. The 2D images were then exported to Mirror® Software (Canfield Scientific, Inc, NJ, USA) and the 3D images into Proplan CMF® software (version 2.1, Materialise HQ, Leuven, Belgium) for further evaluation. For an objective evaluation, 2 observers identified soft tissue landmarks and performed linear measurements on subjects' faces (direct measurements) and both linear and angular measurements on all images(indirect measurements). For a qualitative analysis, 10 dental observers and an expert in facial imaging (subjective gold standard) completed a questionnaire regarding facial characteristics. The reliability of the quantitative data was evaluated using intraclass correlation coefficients, whereas the Fleiss kappa was calculated for qualitative data. Results: Linear and angular measurements carried out on 2D and 3D images showed excellent inter-observer and intra-observer reliability. The 2D photographs displayed the highest combined total error for linear measurements. SPG performed better than LS, with borderline significance (P=0.052). The qualitative assessment showed no significant differences among the 2D and 3D imaging modalities. Conclusion: SPG was found to a reliable and accurate tool for the morphological evaluation of soft tissue in comparison to 2D imaging and laser scanning.

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng;XinYu Su;LiWei Hu;Qian Wang;RongZhen Ouyang;AiMin Sun;Chen Guo;XiaoFen Yao;Yong Zhang;LiJia Wang;YuMin Zhong
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1525-1536
    • /
    • 2021
  • Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

2D-3D convertible display system having a background of full-parallax integral images (완전시차 집적 영상 배경을 가지는 2D-3D 겸용 디스플레이 시스템)

  • Hong, Suk-Pyo;Shin, Dong-Hak;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.369-375
    • /
    • 2009
  • In this paper, we propose a 2D-3D convertible display system having a background of full-parallax integral images. The proposed system is composed of integral imaging system and conventional 2D flat display and is able to operate either 3D mode or 2D mode. In 3D mode, the 3D image is generated by combining the 2D main image with the background image based on integral imaging. In 2D mode, the integral imaging system plays a role as the back-light of 2D flat display and then 2D image is observed through 2D flat display. To show the usefulness of the proposed system, we carry out the preliminary experiments and present the successful experimental results.

3D Interaction Technique on Stereo Display System

  • Kwon, Yong-Moo;Ki, Jeong-Seok;Jeon, Kyeong-Won;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1235-1238
    • /
    • 2007
  • There are several researches on 2D gaze tracking techniques to the 2D screen for the Human-Computer Interaction. However, the researches for the gaze-based interaction to the stereo images or 3D contents are not reported. This paper presents a gaze-based 3D interaction technique on autostereoscopic display system.

  • PDF

High-speed Three-dimensional Surface Profile Measurement with the HiLo Optical Imaging Technique

  • Kang, Sewon;Ryu, Inkeon;Kim, Daekeun;Kauh, Sang Ken
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.568-575
    • /
    • 2018
  • Various techniques to measure the three-dimensional (3D) surface profile of a 3D micro- or nanostructure have been proposed. However, it is difficult to apply such techniques directly to industrial uses because most of them are relatively slow, unreliable, and expensive. The HiLo optical imaging technique, which was recently introduced in the field of fluorescence imaging, is a promising wide-field imaging technique capable of high-speed imaging with a simple optical configuration. It has not been used in measuring a 3D surface profile although confocal microscopy originally developed for fluorescence imaging has been adapted to the field of 3D optical measurement for a long time. In this paper, to the best of our knowledge, the HiLo optical imaging technique for measuring a 3D surface profile is proposed for the first time. Its optical configuration and algorithm for a precisely detecting surface position are designed, optimized, and implemented. Optical performance for several 3D microscale structures is evaluated, and it is confirmed that the capability of measuring a 3D surface profile with HiLo optical imaging technique is comparable to that with confocal microscopy.

Radiolabeled 2D graphitic nanomaterials and their possibility for molecular imaging applications

  • Kang, Seok Min;Kim, Chul Hee;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • In recent years, many researchers have attempted to make use of 2D nanoparticles as molecular imaging probes since extensive investigations proved that 2D nanoparticles in the body tends to accumulate certain lesions by enhanced permeability and retention (EPR) effect. For example, graphene and carbon nitride which have high surface area and modifiable properties showed good biocompatibility and targetability when it used as imaging probes. However, poor dispersibility in physiological mediums and its uncontrolled size limited its usage in bio-application. Therefore, oxidation process and mechanical exfoliation have been developed for overcoming these problems. In this paper, we highlight the several major methods to synthesize biocompatible 2D nanomaterials like graphene and carbon nitride especially for molecular imaging study including positron emission tomography (PET).

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

Optimizations of 3D MRI Techniques in Brain by Evaluating SENSE Factors (삼차원 자기공명영상법의 뇌 구조 영상을 위한 최적화 연구: 센스인자 변화에 따른 신호변화 평가)

  • Park, Myung-Hwan;Lee, Jin-Wan;Lee, Kang-Won;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 2009
  • Purpose : A parallel imaging method provides us to improve temporal resolution to obtain three-dimensional (3D) MR images. The objective of this study was to optimize three 3D MRI techniques by adjusting 2D SESNE factors of the parallel imaging method in phantom and human brain. Materials and Methods : With a 3 Tesla MRI system and an 8-channel phase-array sensitivity-encoding (SENSE) coil, three 3D MRI techniques of 3D T1-weighted imaging (3D T1WI), 3D T2-weighted imaging (3D T2WI) and 3D fluid attenuated inversion recovery (3D FLAIR) imaging were optimized with adjusting SESNE factors in a water phantom and three human brains. The 2D SENSE factor was applied on the phase-encoding and the slice-encoding directions. Signal-to-noise ratio(SNR), percent signal reduction rate(%R), and contrast-to-noise ratio(CNR) were calculated by using signal intensities obtained in specific regions-of-interest (ROI). Results : In the phantom study, SENSE factor = 3 was provided in 0.2% reduction of signals against without using SENSE with imaging within 5 minutes for 3D T1WI. SENSE factor = 2 was provided in 0.98% signal reduction against without using SENSE with imaging within 5 minutes for 3D T2WI. SENSE factor = 4 was provided in 0.2% signal reduction against without using SENSE with imaging around 6 minutes for 3D FLAIR. In the human brain study, SNR and CNR were higher with SENSE factors = 3 than 4 for all three imaging techniques. Conclusion : This study was performed to optimize 2D SENSE factors in the three 3D MRI techniques that can be scanned in clinical time limitations with minimizing SNR reductions. Without compromising SNR and CNR, the optimum 2D SENSE factors were 3 and 4, yielding the scan time of about 5 to 6 minutes. Further studies are necessary to optimize 3D MRI techniques in other areas in human body.

  • PDF

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.