• Title/Summary/Keyword: 2D image files

Search Result 19, Processing Time 0.022 seconds

A Study on the COntour Machining of Text using CNC Laser Machine (CNC레이저 가공기를 이용한 활자체 가공에 관한 연구)

  • 구영회
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

Development of a Satellite Image Preprocessing System for Obtaining 3-D Positional Information -Focused on KOMPSAT and SPOT Imagery- (3차원 위치정보를 취득하기 위한 위성영상처리 시스템 개발 - KOMPSAT 및 SPOT영상을 중심으로 -)

  • 유환희;김동규;진경혁;우해인
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.291-300
    • /
    • 2001
  • In this paper, we developed a Satellite Image Processing System for obtaining 3-D positional information which is composed of five process modules. As a procedure of them, the Data Process module is the procedure that reads and processes the header file to generate data files. and then calculates orbital parameters and sensor attitudes for obtaining of 3-D positional information with them. The 3D Process module is to calculate 3-D positional information and the Dialog Process module is to correct the time of image frame center using the single image or stereo images for implementing the 3D Process module. We expect to obtain 3-D positional information with the header file and minimum GCPs(1∼2 points) using this system efficiently and economically in comparison with existing commercial software packages.

  • PDF

A Parallel Algorithm for 3D Geographic Information System (3차원 공간정보 시스템을 위한 병렬 알고리즘)

  • Jo, Jeong-U;Kim, Jin-Seok
    • The KIPS Transactions:PartA
    • /
    • v.9A no.2
    • /
    • pp.217-224
    • /
    • 2002
  • Many systems handle 3D-image were used. High-performance computer systems and techniques of compressing images to handle 3D-image were used. But there will be cost Problems, if GIS system is implemented, using the high-performance system. And if GIS system is implemented, using the techniques of compressing images, there will be some loss of a image. It will take a long processing time to handle 3D-images using a general PC because the size of 3D-image files are very huge. The parallel algorithm presented in the paper can improve speed to handle 3D-image using parallel computer system. The system uses the method of displacing images from nodes to screens, dividing a 3D-image into multiple sub images on multiple nodes. The performance of the presented algorithm showers improving speed by experiments.

Development of Automatic System for 3D Visualization of Biological Objects

  • Choi, Tae Hyun;Hwnag, Heon;Kim, Chul Su
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-99
    • /
    • 2000
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get interior and exterior informations, constructing 3D image form a series of slices sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D model generator was developed. The system was composed of three modules. The first module was the object handling and image acquisition module, which fed and sliced the object sequentially and maintains the paraffine cool to be in solid state and captures the sectional image consecutively. The second one was the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last was the image processing and visualization module, which processed a series of acquired sectional images and generated 3D volumetric model. Handling module was composed of the gripper, which grasped and fed the object and the cutting device, which cuts the object by moving cutting edge forward and backward. sliced sectional images were acquired and saved in a form of bitmap file. 2D sectional image files were segmented from the background paraffine and utilized to generate the 3D model. Once 3-D model was constructed on the computer, user could manipulated it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

PROTOTYPE AUTOMATIC SYSTEM FOR CONSTRUCTING 3D INTERIOR AND EXTERIOR IMAGE OF BIOLOGICAL OBJECTS

  • Park, T. H.;H. Hwang;Kim, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.318-324
    • /
    • 2000
  • Ultrasonic and magnetic resonance imaging systems are used to visualize the interior states of biological objects. These nondestructive methods have many advantages but too much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get the interior and exterior information, constructing 3D image from the series of the sliced sectional images gives more useful information with relatively low cost. In this paper, PC based automatic 3D model generator was developed. The system was composed of three modules. One is the object handling and image acquisition module, which feeds and slices objects sequentially and maintains the paraffin cool to be in solid state and captures the sectional image consecutively. The second is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last is the image processing and visualization module, which processes a series of acquired sectional images and generates 3D graphic model. The handling module was composed of the gripper, which grasps and feeds the object and the cutting device, which cuts the object by moving cutting edge forward and backward. Sliced sectional images were acquired and saved in the form of bitmap file. The 3D model was generated to obtain the volumetric information using these 2D sectional image files after being segmented from the background paraffin. Once 3-D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

A Study on the Radar Image Generation Method for Ship Handling Simulator

  • Jung, Min;Lee, Sin-Geol;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.30 no.7
    • /
    • pp.611-615
    • /
    • 2006
  • This paper proposes a method for generating radar images used in a ship handling simulator, which includes mathematical logics based on radar equations and information from Openflight format files. In order to make radar image much similar to that of real radar in PPI type, the proposed mathematical logic derives radar video signals under the consideration of not only the data form flight format file of simulation scenes, but also geographical radar's position. The proposed method is considered useful to make radar images in ship handling simulator with accuracy and reality.

A Study on the Radar Image Generation Method in Ship Handling Simulator

  • Jung Min;Lee Sin-Geol;Song Chea-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.61-66
    • /
    • 2006
  • This paper proposes a method for generating radar images used in ship handling simulator, which includes mathematical logics based on radar equations and information from Openflight format files. In order to make radar image much similar to that of real radar in PPI type, the proposed mathematical logic derives radar video signals under the consideration of riot only the data form flight format file of simulation scenes, but also geographical radar's position. The proposed method is considered useful to make radar images in ship handling simulator with accuracy and reality.

  • PDF

A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network (초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구)

  • Kim, Jin-Ho;Kim, Jee-In;Chang, Chun-Hyon;Song, Sang-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3275-3284
    • /
    • 1998
  • In this paper, we deseribe a Medical Image Information System. Our system stores and manages 5 dimensional medical image data and provides the 3 dimensional medical data via the Internet. The Internet standard VR format. VRML(Virtual Reality Modeling Language) is used to represent the 3I) medical image data. The 3D images are reconstructed from medical image data which are enerated by medical imaging systems such ans CT(Computerized Tomography). MRI(Magnetic Resonance Imaging). PET(Positron Emission Tomograph), SPECT(Single Photon Emission Compated Tomography). We implemented the medical image information system shich rses a surface-based rendering method for the econstruction of 3D images from 2D medical image data. In order to reduce the size of image files to be transfered via the Internet. The system can reduce more than 50% for the triangles which represent the surfaces of the generated 3D medical images. When we compress the 3D image file, the size of the file can be redued more than 80%. The users can promptly retrieve 3D medical image data through the Internet and view the 3D medical images without a graphical acceleration card, because the images are represented in VRML. The image data are generated by various types of medical imaging systems such as CT, MRI, PET, and SPECT. Our system can display those different types of medical images in the 2D and the 3D formats. The patient information and the diagnostic information are also provided by the system. The system can be used to implement the "Tele medicaine" systems.

  • PDF

A GIS, GPS, Database, Internet GIS $software{\copyright}$ The First Arabian GIS $Software\copyright}$

  • El-Shayal, Mohamed El-Sayed
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.695-697
    • /
    • 2006
  • Elshayal $Smart{\copyright}$ software is an almost First Arabian GIS $software{\copyright}$ which completely developed by Arabian developers team and independent of any commercial software package. The software current Features are View and Edit shape files, build new layers, add existing layers, remove layers, swap layers, save layers, set layer data sources, layer properties, zoom in & zoom out, pan, identify, selecting features, invert selection, show data table, data query builder, location query builder, build network, find shortest path, print map, save map image, copy map image to clipboard, save project map, edit move vertex, edit move features, snap vertexes, set vertex XY, move settings, converting coordinate system, applying VB script, copy selected features to another layer, move selected features to another layer, delete selected features, edit data table, modify table structure, edit map features, drawing new features, GPS tracking, 3D view, etc... The software expected Features are: Viewing raster image and image geo-referencing, read other map formats such as DXF Format and Tiger Line Format.

  • PDF

The Difference of the Changes of Images on Ultrasound Scanner Setting Parameters

  • Kang, Hae-Kyung;Kim, Youn-Min;Kim, Hyun-Soo;Lee, Sung-Hee;Cho, Se-Youn;Lyu, Young-Eun;Jung, In-A
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.81-87
    • /
    • 2010
  • The setting parameters of ultrasound scanner give influences to change of image. Sonographers have used a Matlab program to make Low Contrast Sensitivity(LCS) value and compared original images in order to evaluate the use of the supersonic diagnosis machinery. We confirmed the change of image in Grayscale values using Photoshop program. Experiment equipment of our research used A Medison Accuvix V10, A Multi-Tissue Ultrasound Phantom(040 GSE) of CHRIS Company, A Adobe Photoshop CS4 Program, A Convex Probe, A USB memory stick, A Probe Fixation Equipment. The method used Gain, Dynamic Range(DR) of the setting parameters of ultrasound scanner and researched Gain and DR was set to 10 dB. We changed the different settings to see the changes of images using Grayscale values of a Photoshop program about tissue images of a phantom. This study evaluated DR and Gain whether it is an image controller to get the optimum contrast to produce an image to see the how effect on the images. We did not use Gateway in supersonic diagnosis machinery. We can easily open to open the files through Photoshop program before we get Digital Imaging and Communications in Medicine(DICOM) files use USB memory stick in supersonic diagnosis machinery. When we diagnosed the lesion of the patient with ultrasound, the contrast and the Gray scale value of image are very important. In this research, we determined the optimum setting parameters that provided useful information to diagnose disease and evaluated the change of improved images.

  • PDF