• Title/Summary/Keyword: 2D data

Search Result 10,669, Processing Time 0.044 seconds

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

A Study on Perspective Display Using 3D Elevation Data with 2D Information Overlay (2차원 지형정보와 격자형 고도자료의 중첩도시 기법 연구)

  • 이병길;이상지
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 1997
  • We propose 3D perspective display using elevation matrix data with 2D information overlay. This algorithm is based on ID scan-line method and we used color index of the newly developed raster map, VRRG(Vector Restored Raster Graphics). The proposed method allows the fast generation of perspective view of 3D data with 2D overlay and the fast selective display of the features of 2D overlay.

  • PDF

Data Sharing Technique between Heterogeneous based on Cloud Service (클라우드 서비스 기반 이기종간의 데이터 공유 기법)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.391-398
    • /
    • 2018
  • There are many problems caused by data sharing between general heterogeneous digital devices due to various interfaces. To solve this problem, this paper proposes heterogeneous data sharing with cloud service and mobile through D2D communication that supports communication between different devices. The proposed technique is used to reduce the load on the server to perform data synchronization. Also, in order to minimize data latency caused by data replication between different devices, a technique to enhance the speed of data writing with copying only the modified parts in the chunk list is adopted and cloud service model integrated with mobile environment is realized in order to minimize the network bandwidth consumed for synchronization for data sharing. Therefore, it is possible to share data in different spaces efficiently with maintaining data integrity and minimizing latency in data.

A Study on Estimation of Distribution Rate of R&8 Input on R&D Output (R&D성과에 대한 R&D투입요소의 분배율 계측에 관한 연구)

  • Lee, Jae-Ha;Chang, Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.129-134
    • /
    • 1997
  • The purpose of this study is to estimate the distribution rate of R&D input on R&D output in major manufacturing industrial sector. The distribution rate is estimated on time-series data for the period 1980 to 1996. The data used in this study can be divided into the two categories. 1) R&D output data (Patent, Utility) 2) R&D input data (R&D expenditure, R&D workers) The raw data of R&D expenditure is transformed into R&D stock. And the specific production function is used to represent the interaction between R&D input and output. The production function shows the maximum rate of R&D output that can be achieved by certain given, technologically possible, R&D input combinations. The main findings can be summarized as follows. 1) There was a diminishing return between R&D input and output$(\alpha+\beta<1). 2) R&D output growth was more affected by R&D expenditures than R&D workers. 3) R&D workers were more contributed highly to Patent granted than Utility model.

  • PDF

Comparative study of data selection in data integration for 3D building reconstruction

  • Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1393-1395
    • /
    • 2003
  • In this research, we presented a data integration, which integrates ultra high resolution images and complementary data for 3D building reconstruction. In our method, as the ultra high resolution image, Three Line Sensor (TLS) images are used in combination with 2D digital maps, DSMs and both of them. Reconstructed 3D buildings, correctness rate and the accuracy of results were presented. As a result, optimized combination scheme of data sets , sensors and methods was proposed.

  • PDF

An Untrained Person's Posture Estimation Scheme by Exploiting a Single 24GHz FMCW Radar and 2D CNN (단일 24GHz FMCW 레이더 및 2D CNN을 이용하여 학습되지 않은 요구조자의 자세 추정 기법)

  • Kyongseok Jang;Junhao Zhou;Chao Sun;Youngok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.897-907
    • /
    • 2023
  • Purpose: In this study, We aim to estimate a untrained person's three postures using a 2D CNN model which is trained with minimal FFT data collected by a 24GHz FMCW radar. Method: In an indoor space, we collected FFT data for three distinct postures (standing, sitting, and lying) from three different individuals. To apply this data to a 2D CNN model, we first converted the collected data into 2D images. These images were then trained using the 2D CNN model to recognize the distinct features of each posture. Following the training, we evaluated the model's accuracy in differentiating the posture features across various individuals. Result: According to the experimental results, the average accuracy of the proposed scheme for the three postures was shown to be a 89.99% and it outperforms the conventional 1D CNN and the SVM schemes. Conclusion: In this study, we aim to estimate any person's three postures using a 2D CNN model and a 24GHz FMCW radar for disastrous situations in indoor. it is shown that the different posture of any persons can be accurately estimated even though his or her data is not used for training the AI model.

Study on the 3D Modeling Data Conversion Algorithm from 2D Images (2D 이미지에서 3D 모델링 데이터 변환 알고리즘에 관한 연구)

  • Choi, Tea Jun;Lee, Hee Man;Kim, Eung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.479-486
    • /
    • 2016
  • In this paper, the algorithm which can convert a 2D image into a 3D Model will be discussed. The 2D picture drawn by a user is scanned for image processing. The Canny algorithm is employed to find the contour. The waterfront algorithm is proposed to find foreground image area. The foreground area is segmented to decompose the complex shapes into simple shapes. Then, simple segmented foreground image is converted into 3D model to become a complex 3D model. The 3D conversion formular used in this paper is also discussed. The generated 3D model data will be useful for 3D animation and other 3D contents creation.

Evaluation of the Tribological Parameters of Three-dimensional Surface Topography with Various Property

  • Uchidate, M.;Shimizu, T.;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.249-250
    • /
    • 2002
  • In this paper, the relationship among the 3-D surface topography parameters are studied. Several surface topography parameters that are important in tribology are calculated against various surface topography data. 3-D surface data with desired properties are generated by using the non-causal 2-D auto-regressive (AR) model. The non-causal 2-D AR model is a random 3-D surface topography model that can generate 3-D surface topography data with specified parameters.

  • PDF

Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology (인공지능을 이용한 3D 콘텐츠 기술 동향 및 향후 전망)

  • Lee, S.W.;Hwang, B.W.;Lim, S.J.;Yoon, S.U.;Kim, T.J.;Kim, K.N.;Kim, D.H;Park, C.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Recent technological advances in three-dimensional (3D) sensing devices and machine learning such as deep leaning has enabled data-driven 3D applications. Research on artificial intelligence has developed for the past few years and 3D deep learning has been introduced. This is the result of the availability of high-quality big data, increases in computing power, and development of new algorithms; before the introduction of 3D deep leaning, the main targets for deep learning were one-dimensional (1D) audio files and two-dimensional (2D) images. The research field of deep leaning has extended from discriminative models such as classification/segmentation/reconstruction models to generative models such as those including style transfer and generation of non-existing data. Unlike 2D learning, it is not easy to acquire 3D learning data. Although low-cost 3D data acquisition sensors have become increasingly popular owing to advances in 3D vision technology, the generation/acquisition of 3D data is still very difficult. Even if 3D data can be acquired, post-processing remains a significant problem. Moreover, it is not easy to directly apply existing network models such as convolution networks owing to the various ways in which 3D data is represented. In this paper, we summarize technological trends in AI-based 3D content generation.

A Study on the Flattening of 3D Mesh data of Shoes (신발 곡면의 3차원 격자 데이터의 평면화에 관한 연구)

  • Kim Young-Bong;Lee Yun-Jung
    • Journal of Game and Entertainment
    • /
    • v.2 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • CAD system is a very important technology in designing many products which we are using today. This CAD technology have enlarging its area into 3D CAD systems with the development of computer graphics technologies. In particular, such advances have also been realized in special area such as the CAD system for designing shoes. 3D CAD systems for shoes design must provide compatibility between 3D and 2D data because shoes are made using 2D parts of pieces of leather or cloth. Many designers get high performances using 2D shoe CAD systems because they have had long practices with the 2D systems. Therefore, to get the mapping between 2D modeling and 3D modeling is one of very important components in 3D CAD system. In this paper, we proposed a flattening method that convert 3D shoes data to 2D data.

  • PDF