• Title/Summary/Keyword: 2D cascade

Search Result 117, Processing Time 0.022 seconds

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Navier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Design of Low Power CMOS LNA for using Current Reuse Technique (전류 재사용 기법을 이용한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1465-1470
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications that is a promising international standard for short area wireless communications. The proposed circuit has been designed using TSMC $0.18{\mu}m$ CMOS process technology and two stage cascade topology by current reuse technique. Two stage cascade amplifiers use the same bias current in the current reused stage which leads to the reduction of the power dissipation. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results show that the LNA has a extremely low power dissipation of 1.38mW with a supply voltage of 1.0V. This is the lowest value among LNAs ever reported. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and minimum noise figure of 1.13dB.

Computation of Broadband Noise of a 2-B Flat-airfoil Cascade Subject to Ingested Turbulence (난류 와류의 입사에 의한 이차원 평판 에어포일 캐스케이드의 광대역 소음장의 계산)

  • Cheong, Cheolung;Joseph Phillip;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.687-696
    • /
    • 2005
  • Acoustic power spectrum of the upstream and downstream sound field due to an isotropic frozen turbulent gust impinging on a cascade of flat plate airfoils are computed by using a analytic formulation derived from Smith's method, and Whitehead's LINSUB codes. A parametric study of the effects on sound power of the number of blades and turbulence length scale is performed with an emphasis on analyzing the characteristics of sound power spectrum. Through the comparison of the computed results of sound power, it is found that acoustic power spectrum from the 2-D cascade subject to a ingested turbulence can be categorized into two distinct regions. one is lower frequency region where some spectral components of turbulence do not contribute to the cut-on acoustic modes and therefore the effect of the cascade geometry is more dominant ; the other is higher frequency region where all of spectral components of turbulence make contributions to cut-on acoustic modes and thus acoustic power is approximately proportional to the blade number.

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes

  • Park, Geun-Soo;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.821-828
    • /
    • 2015
  • Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this 'MyD88-BLT2' cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes.

A 1.2V 90dB CIFB Sigma-Delta Analog Modulator for Low-power Sensor Interface (저전력 센서 인터페이스를 위한 1.2V 90dB CIFB 시그마-델타 아날로그 모듈레이터)

  • Park, Jin-Woo;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.786-792
    • /
    • 2018
  • A third-order sigma-delta modulator with the architecture of cascade of integrator feedback (CIFB) is proposed for an analog-digital converter used in low-power sensor interfaces. It consists of three switched-capacitor integrators using a gain-enhanced current-mirror-based amplifier, a single-bit comparator, and a non-overlapped clock generator. The proposed sigma-delta analog modulator with over-sampling ratio of 160 and maximum SNR of 90.45 dB is implemented using $0.11-{\mu}m$ CMOS process with 1.2-V supply voltage. The area and power consumption of the sigma-delta analog modulator are $0.145mm^2$ and $341{\mu}W$, respectively.

Numerical Analysis of 2D, Steady, Inviscid Transonic Flow Through Stationary Compressor Cascade (2차원 직선 정지 익렬에서의 비점성 천이음속유동에 관한 수치적 해석)

  • 최인환;이진호;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1244-1253
    • /
    • 1990
  • Time-Marching methods solving Euler equations are used for calculation of two-dimensional, steady, inviscid flow through a stationary compressor cascade. Calculation method is based on the Denton`s opposed difference scheme. A smoothing in the axial direction is used to increase the stability of solution. The computational grid consists of quadrilateral elements, one of which has four nodes at each corner and the grid points on the upper periodic boundaries are located one pitch away from those on the lower boundaries to satisfy the periodicity condition. Results of calculation show good agreement with other computational and experimental results, proving that the present method of calculation should be applied with confidence for the cascade flow with shock wave.

Control of The D-STATCON Using Multilevel Voltage Source Inverters (MULTILEVEL 전압형 인버터들을 사용한 D-STATCON의 제어)

  • Min, Wan-Ki;Min, Jun-Ki;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1925-1927
    • /
    • 1998
  • D-STATCON using the multilevel voltage source inverters is presented for voltage regulation and reactive power compensation in distribution system. This cascade M-level inverter consists of (M-1)/2 single phase full bridge inverter(FBI). This multilevel inverter is a natural fit to the flexible ac transmission systems(FACTS) including STATCON, SVC, series compensation and phase shifting, It can solve the problems of conventional transformer-based multipulse inverters and multilevel diode-clamped inverters. From the simulation results, the superiority of D-STATCON with cascade multilevel inverter is shown for high power application.

  • PDF