• Title/Summary/Keyword: 2D camera calibration

Search Result 116, Processing Time 0.029 seconds

Real-time 3D Calibration for Pose Computation in Extended Environments (확장 환경에서의 위치 및 방향 정보 계산을 위한 실시간 3차원 위치 계산)

  • Park, Jun;Jang, Jun-Ho;Kwon, Jang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.455-461
    • /
    • 2003
  • In Computer Vision-based pose computation systems, markers are often used as reference points: artificially-designed (to maximize the efficiency in detection) markers are installed in the environment and their positions are measured using probing devices such as mechanical digitizers and laser range finders. The camera (or the user) pose is computed based on three or more markers 3D positions and the 2D positions in the image. However, in extended environments, it is impractical to install enough number of markers to be detected by the camera. Instead, natural features, if detected and tracked efficiently, can be used as reference points. These natural features 3D positions need to be measured before they can be used as reference points. In this paper, technologies of utilizing natural features are introduced for pose computation or refinement in extended environments.

  • PDF

View Morphing for Generation of In-between Scenes from Un-calibrated Images (비보정 (un-calibrated) 영상으로부터 중간영상 생성을 위한 뷰 몰핑)

  • Song Jin-Young;Hwang Yong-Ho;Hong Hyun-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Image morphing to generate 2D transitions between images may be difficult even to express simple 3D transformations. In addition, previous view morphing method requires control points for postwarping, and is much affected by self- occlusion. This paper presents a new morphing algorithm that can generate automatically in-between scenes from un-calibrated images. Our algorithm rectifies input images based on the fundamental matrix, which is followed by linear interpolation with bilinear disparity map. In final, we generate in-between views by inverse mapping of homography between the rectified images. The proposed method nay be applied to photographs and drawings, because neither knowledge of 3D shape nor camera calibration, which is complex process generally, is required. The generated in-between views can be used in various application areas such as simulation system of virtual environment and image communication.

Fundamental Matrix Estimation and Key Frame Selection for Full 3D Reconstruction Under Circular Motion (회전 영상에서 기본 행렬 추정 및 키 프레임 선택을 이용한 전방향 3차원 영상 재구성)

  • Kim, Sang-Hoon;Seo, Yung-Ho;Kim, Tae-Eun;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.10-23
    • /
    • 2009
  • The fundamental matrix and key frame selection are one of the most important techniques to recover full 3D reconstruction of objects from turntable sequences. This paper proposes a new algorithm that estimates a robust fundamental matrix for camera calibration from uncalibrated images taken under turn-table motion. Single axis turntable motion can be described in terms of its fixed entities. This provides new algorithms for computing the fundamental matrix. From the projective properties of the conics and fundamental matrix the Euclidean 3D coordinates of a point are obtained from geometric locus of the image points trajectories. Experimental results on real and virtual image sequences demonstrate good object reconstructions.

A Real-time Augmented Video System using Chroma-Pattern Tracking (색상패턴 추적을 이용한 실시간 증강영상 시스템)

  • 박성춘;남승진;오주현;박창섭
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.2-9
    • /
    • 2002
  • Recently. VR( Virtual Reality) applications such as virtual studio and virtual character are wifely used In TV programs. and AR( Augmented Reality) applications are also belong taken an interest increasingly. This paper introduces a virtual screen system. which Is a new AR application for broadcasting. The virtual screen system is a real-time video augmentation system by tracking a chroma-patterned moving panel. We haute recently developed a virtual screen system.'K-vision'. Our system enables the user to hold and morse a simple panel on which live video, pictures of 3D graphics images can appear. All the Images seen on the panel change In the correct perspective, according to movements of the camera and the user holding the panel, in real-time. For the purpose of tracking janet. we use some computer vision techniques such as blob analysis and feature tracking. K-vision can work well with any type of camera. requiring no special add-ons. And no need for sensor attachments to the panel. no calibration procedures required. We are using K-vision in some TV programs such as election. documentary and entertainment.

An Efficient Analysis Method of Multiple View Images for Motion Capture (모션 캡쳐를 위한 다시점 영상의 효율적인 분석법)

  • Seo, Yung-Ho;Park, You-Shin;Koo, Ddeo-Ol-Ra;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.44-56
    • /
    • 2008
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.

Development of Localization Sensor System for Intelligent Robots (지능로봇용 위치인식 시스템 개발)

  • You, Ki-Sung;Choi, Chin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.116-124
    • /
    • 2011
  • A service robot can identify its own position relative to landmarks, the locations of which are known in advance. The main contribution of this research is that it gives various ways of making the self-localizing error smaller by referring to special landmarks which are developed as high gain reflection material and coded array associations. In this paper, the authors propose a set of indices to evaluate the accuracy of self-localizing methods using the selective reflection landmark and infrared projector, and the indices are derived from the sensitivity enhancement using 3D distortion calibration of camera. And then, the accurarcy of self-localizing a mobile robot with landmarks based on the indices is evaluated, and a rational way to minimize to reduce the computational cost of selecting the best self-localizing method. The simulation results show a high accuracy and a good performance.

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

The Near-Infrared Imaging Spectroscopy to Visualize the Distribution of Sugar Content in the Flesh of a Melon

  • Tsuta, Mizuki;Sugiyama, Junichi;Sagara, Yasuyuki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1526-1526
    • /
    • 2001
  • To improve the accuracy of sweetness sensor in automated sorting operations, it is necessary to clarify unevenness of the sugar content distribution within fruits. And it is expected that the technique to evaluate the content distribution in fruits contribute to the development of the near-infrared (NIR) imaging spectroscopy. Sugiyama (1999) had succeeded to visualize the distribution of the sugar content on the surface of a half-cut green fresh melon. However, this method cannot be applied to red flesh melons because it depends on information of the absorption band of chlorophyll (676 nm), which is affected by the color of the fresh. The objective of this study was to develop the universal visualization method depends on the absorption band of sugar, which can be applied to various kinds of melons and other fruits. The relationship between the sugar contents and absorption spectra of both green and red fresh melons were investigated by using a NIR spectrometer to determine the absorption band of sugar. The combination of 2$\^$nd/ derivative absorbances at 902 nm and 874 nm was highly correlated with the sugar contents. The wavelength of 902 nm is attributed to the absorption band of sugar. A cooled charge-coupled device (CCD) imaging camera which has 16 bit (65536 steps) A/D resolution was equipped with rotating band-pass filter wheel and used to capture the spectral absorption images of the flesh of a vertically half-cut red fresh melon. The advantage of the high A/D resolution in this research is that each pixel of the CCD is expected to function as a detector of the NIR spectrometer for quantitative analysis. Images at 846 nm, 874 nm, 902 nm and 930 nm were acquired using this CCD camera. Then the 2$\^$nd/ derivative absorbances at 902 nm and 874 nm at each pixel were calculated using these four images. On the other hand, parts of the same melon were extracted for capturing the images and squeezed for the measurement of sugar content. Then the calibration curve between the combination of 2$\^$nd/ derivative absorbances at 902 nm and 874 nm and sugar content was developed. The calibration method based on NIR spectroscopy techniques was applied to each pixel of the images to convert the 2$\^$nd/ derivative absorbances into the Brix sugar content. Mapping the sugar content value of each pixel with linear color scale, the distribution of the sugar content was visualized. As a result of the visualization, it was quantitatively confirmed that the Brix sugar contents are low at the near of the skin and become higher towards the seeds. This result suggests that the visualization technique by the NIR imaging spectroscopy could become a new useful method fer quality evaluation of melons.

  • PDF

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 김도훈;유원재;박낙규;강영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.255-259
    • /
    • 2003
  • Moire topography method isa well-known non-contacting 3-D measurement method as afast non-contact test for three-dimension shape measuring method. Recently, it's important to study the automatic three-dimension measurement by moire topography because it is frequently applied to the reverse engineering , the medical , the entertainment fields. Three-dimension measurement using projection of moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, the classical moire method is computerized-so called digital moire when a virtual grating pattern is projected on a surface, the captured image by the CCD camera has three-dimension information of the objects. The moire image can be obtained through a simple image processing and a reference grating pattern. and it provides similar results without physical grating pattern. digital projection moire topography turn out to be very effective for the three-dimension measurement of objects. Using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the four-three step algorithm method instead of the same step in the phase shifting of different pitch.

  • PDF