• Title/Summary/Keyword: 2D Volume Fraction

Search Result 184, Processing Time 0.029 seconds

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Park, S.D.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.

Calcium annealing approach to control of surface groups and formation of oxide in Ti3C2Tx MXene

  • Jung-Min Oh;Su Bin Choi;Taeheon Kim;Jikwang Chae;Hyeonsu Lim;Jae-Won Lim;In-Seok Seo;Jong-Woong Kim
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Ti3C2Tx MXene, a 2D material, is known to exhibit unique characteristics that are strongly dependent on surface termination groups. Here, we developed a novel annealing approach with Ca as a reducing agent to simultaneously remove F and O groups from the surface of multilayered MXene powder. Unlike H2 annealing that removes F effectively but has difficulty in removing O, annealing with Ca effectively removed both O and F. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy revealed that the proposed approach effectively removed F and O from the MXene powder. The results of O/N analyses showed that the O concentration decreased by 57.5% (from 2.66 to 1.13 wt%). In addition, XPS fitting showed that the volume fraction of metal oxides (TiO2 and Al2O3) decreased, while surface termination groups (-O and -OH) were enhanced, which could increase the hydrophilic and adsorption properties of the MXene. These findings suggest that when F and O are removed from the MXene powder, the interlayer spacing of its lattice structure increases. The proposed treatment also resulted in an increase in the specific surface area (from 5.17 to 10.98 m2/g), with an increase in oxidation resistance temperature in air from ~436 to ~667 ℃. The benefits of this novel technology were verified by demonstrating the significantly improved cyclic charge-discharge characteristics of a lithium-ion battery with a Ca-treated MXene electrode.

CT Based 3-Dimensional Treatment Planning of Intracavitary Brachytherapy for Cancer of the Cervix : Comparison between Dose-Volume Histograms and ICRU Point Doses to the Rectum and Bladder

  • Hashim, Natasha;Jamalludin, Zulaikha;Ung, Ngie Min;Ho, Gwo Fuang;Malik, Rozita Abdul;Ee Phua, Vincent Chee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5259-5264
    • /
    • 2014
  • Background: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT). Materials and Methods: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose ($D_{Max}$) to rectum was the highest recorded dose at one of these five points. Using the HDRplus 2.6 brachyhtherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded ($D_{2cc}$) for all individual fractions. The mean $D_{2cc}$ of rectum was compared to the means of ICRU rectal point and rectal $D_{Max}$ using the Student's t-test. The mean $D_{2cc}$ of bladder was compared with the mean ICRU bladder point using the same statistical test. The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (${\alpha}/{\beta}$ value of 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was $77.5Gy{\alpha}/{\beta}10$. The mean dose to the rectum was $4.58{\pm}1.22Gy$ for $D_{2cc}$, $3.76{\pm}0.65Gy$ at $D_{ICRU}$ and $4.75{\pm}1.01Gy$ at $D_{Max}$. The mean rectal $D_{2cc}$ dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48-1.19Gy). The mean EQD2 was $68.52{\pm}7.24Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$, $61.71{\pm}2.77Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$ and $69.24{\pm}6.02Gy_{{\alpha}/{\beta}3}$ at $D_{Max}$. The mean ratio of $D_{2cc}$ rectum to $D_{ICRU}$ rectum was 1.25 and the mean ratio of $D_{2cc}$ rectum to $D_{Max}$ rectum was 0.98 for all individual fractions. The mean dose to the bladder was $6.00{\pm}1.90Gy$ for $D_{2cc}$ and $5.10{\pm}2.03Gy$ at $D_{ICRU}$. However, the mean $D_{2cc}$ dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25Gy). The mean EQD2 was $81.85{\pm}13.03Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$ and $74.11{\pm}19.39Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$. The mean ratio of $D_{2cc}$ bladder to $D_{ICRU}$ bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose. Conclusions: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the $D_{2cc}$ and rectal $D_{Max}$ for $D_{2cc}$. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the $D_{2cc}$.

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

Three-Dimensional Myocardial Strain for the Prediction of Clinical Events in Patients With ST-Segment Elevation Myocardial Infarction

  • Wonsuk Choi;Chi-Hoon Kim;In-Chang Hwang;Chang-Hwan Yoon;Hong-Mi Choi;Yeonyee E Yoon;In-Ho Chae;Goo-Yeong Cho
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • BACKGROUND: Two-dimensional (2D) strain provides more predictive power than ejection fraction (EF) in patients with ST-elevation myocardial infarction (STEMI). 3D strain and EF are also expected to have better clinical usefulness and overcome several inherent limitations of 2D strain. We aimed to clarify the prognostic significance of 3D strain analysis in patients with STEMI. METHODS: Patients who underwent successful revascularization for STEMI were retrospectively recruited. In addition to conventional parameters, 3D EF, global longitudinal strain (GLS), global area strain (GAS), as well as 2D GLS were obtained. We constructed a composite outcome consisting of all-cause death or re-hospitalization for acute heart failure or ventricular arrhythmia. RESULTS: Of 632 STEMI patients, 545 patients (86.2%) had a reliable 3D strain analysis. During median follow-up of 49.5 months, 55 (10.1%) patients experienced the adverse outcome. Left ventricle EF, 2D GLS, 3D EF, 3D GLS, and 3D GAS were significantly associated with poor outcomes. (all, p < 0.001) The maximum likelihood-ratio test was performed to evaluate the additional prognostic value of 2D GLS or 3D GLS over the prognostic model consisting of clinical characteristics and EF, and the likelihood ratio was 15.9 for 2D GLS (p < 0.001) and 1.49 for 3D GLS (p = 0.22). CONCLUSIONS: The predictive power of 3D strain was slightly lower than the 2D strain. Although we can obtain 3D strains, volume, and EF simultaneously in same cycle, the clinical implications of 3D strains in STEMI need to be investigated further.

Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel (고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석)

  • You, Han-Jo;Jung, Yeon-Hoon;Kim, Jin-guil;Shin, Hyung-Soon;Lim, Yoon-Jung;Lee, Sang-Soo;Son, Hae-Jun;Lim, Sam-Hwa;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process (브레이징용 Al 합금 분말의 미세조직에 미치는 Sn 함량의 영향)

  • Kim, Yong-Ho;Yoo, Hyo-Sang;Na, Sang-Su;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.

Electric and mechanical properties of $ZrO_2$ reinforced Piezoelectric Ceramics ($ZrO_2$ 첨가된 압전 복합체의 전기-기계 특성)

  • Jeong, Soon-Jong;Kim, Min-Soo;Lee, Dae-Su;Park, Eon-Cheol;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • The objective of this study is to fabricate a piezoelectric composite consisting of a piezoelectric ceramic and a high toughness material and to evaluate their electromechanical properties for high force actuator applications. The mixture of the piezoelectric material, PMNZT, and high toughness material, $ZrO_2$, exhibited high piezoelectric properties as well as good mechanical fracture resistance. Up to 2 vol% of $ZrO_2$ in PMNZT matrix, piezoelectric $d_{33}$ coefficient was above 400 pC/N, being 80% of that for the original PMNZT, and the toughness showed twice of the PMNZT. When the volume fraction of the $ZrO_2$ was above 5%, however, the piezoelectric coefficient became abruptly decreased and it approached 20% of value for the PMNZT.

  • PDF

The role of internal architecture in producing high-strength 3D printed cobalt-chromium objects

  • Abdullah Jasim Mohammed;Ahmed Asim Al-Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.91-104
    • /
    • 2024
  • PURPOSE. The objectives of the current study were to estimate the influence of self-reinforced hollow structures with a graded density on the dimensional accuracy, weight, and mechanical properties of Co-Cr objects printed with the direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Sixty-five dog-bone samples were manufactured to evaluate the dimensional accuracy of printing, weight, and tensile properties of DMLS printed Co-Cr. They were divided into Group 1 (control) (n = 5), Group 2, 3, and 4 with incorporated hollow structures based on (spherical, elliptical, and diamond) shapes; they were subdivided into subgroups (n = 5) according to the volumetric reduction (10%, 15%, 20% and 25%). Radiographic imaging and microscopic analysis of the fractographs were conducted to validate the created geometries; the dimensional accuracy, weight, yield tensile strength, and modulus of elasticity were calculated. The data were estimated by one-way ANOVA and Duncan's tests at P < .05. RESULTS. The accuracy test showed an insignificant difference in the x, y, z directions in all printed groups. The weight was significantly reduced proportionally to the reduced volume fraction. The yield strength and elastic modulus of the control group and Group 2 at 10% volume reduction were comparable and significantly higher than the other subgroups. CONCLUSION. The printing accuracy was not affected by the presence or type of the hollow geometry. The weight of Group 2 at 10% reduction was significantly lower than that of the control group. The yield strength and elastic modulus of the Group 2 at a 10% reduction showed means equivalent to the compact objects and were significantly higher than other subgroups.