• Title/Summary/Keyword: 2D Volume Fraction

Search Result 184, Processing Time 0.026 seconds

Behavior of 2-D Biaxial braided hollow composite under bending (굽힘 하중 하에서의 2-D Biaxial Braided 중공형 복합재료의 거동)

  • 서거원;임동진;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.12-16
    • /
    • 2000
  • This study is about the effect of braiding on the 2-D biaxial braided hollow composite(BD) compared with unidirectional hollow composite(UD). The specimens were made of T700S Carbon/Epoxy prepreg and T700S dried Carbon yarns. Fiber volume fraction of UD and BD was obtained experimentally and analytically. Fiber volume fraction of BD was derived based on unit cell of braiding yarn section. Bending test was executed to investigate the effect of braiding part. The result of experiment and analysis of fiber volume fraction has good agreement. Bending strength of BD is about 20% higher than that of UD.

  • PDF

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

Effects on PZT volume fraction on the dielectric and piezoelectric properties with PZT/PVDF O-3 composites (PZT/PVDF O-3형 복합전체에 있어서 PZT 체적비 변화가 유전 및 압전특성에 미치는 영향)

  • 이덕출;김용혁
    • Electrical & Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.44-53
    • /
    • 1988
  • In this study, PZT/PVDF composites with O-3 phase connectivity were prepared by hot pressing method, and the dielectric and piezoelectric properties as a function of PZT volume fraction were investigated. A modified cubic model was introduced to explain the influence of the PZT volume fraction on the experimentally determined dielectric constant. As A n=0.125, the measured dielectric constant values agreed with the calculated values. It was found that dielectric constant .xi.$_{33}$ and piezoelectric coefficient d$_{33}$ increased with indreasing PZT volume fraction, and hydrostatic piezoelectric figure of merit d/aub h/.g$_{h}$ was improved relative to that of the PZT single phase material.l.l.l.

  • PDF

A Study on the Effect of Steel Fiber in Reinforced Concrete Coupling Beam Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 연결보에서 강섬유의 보강효과에 관한 연구)

  • Kim, Jin-Sung;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.181-190
    • /
    • 2019
  • In this study, four reinforced concrete coupling beams were subjected to cyclic lateral loading test to evaluate the structural performance of coupling beam according to volume fraction of steel fiber. For this purpose, the volume fraction of steel fiber(0%, 1%, 2%) and transverse reinforcement spacing were determined as the main parameter. According to the test results, the maximum strength of D-40C-s100-0 was 1.15, 1.13, 1.05 times higher than D-40C-s300-0, D-40C-s300-1, D-40C-s300-2, respectively. The maximum strength of coupling beams with mitigated rebar details increases as the volume fraction of steel fiber increases. Although steel fiber 2% reinforced specimen(D-40C-s300-2) did not satisfy the amount of transverse reinforcement required for seismic design of coupling beam, the overall performance including to maximum strength, ductility and energy dissipation capacity was similar to the control specimen(D-40C-s100-0). As a result, the use of steel fiber with 2% reinforcement can partially replace the transverse reinforcement in diagonally reinforced concrete coupling beam.

Material Topology Optimization of FGMs using Homogenization and Linear Interpolation Methods (균질화 및 선형보간법을 이용한 기능경사 내열복합재의 물성분포 최적설계)

  • 조진래;박형종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2001
  • In a functionally graded materials(FGM), two constituent material particles are mixed up according to a specific volume fraction distribution so that its thermoelastic behavior is definitely characterized by such a material composition distribution. Therefore, the designer should determine the most suitable volume fraction distribution in order to design a FGM that optimally meets the desired performance against the given constraints. In this paper, we address a numerical optimization procedure, with employing interior penalty function method(IPFM) and FDM, for optimizing 2D volume fractions of heat-resisting FGMs composed of metal and ceramic. We discretize a FGM domain into finite number of homogenized rectangular cells of single design variable in order for the optimization efficiency. However, after the optimization process, we interpolate the discontinuous volume fraction with globally continuous bilinear function in order to enforce the continuity of volume fraction distributions.

  • PDF

A Study on Mold Filling and Fluidity of Mg Alloy in Thixocasting (Mg합금의 반용융가압주조시 주조조건에 의한 금형충전성 및 유동성 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun- Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.184-193
    • /
    • 1995
  • Effects of process parameters during thixocasting, such as solid volume fraction, mold temperature and extrusion ratio, on the mold filling behaviour and fluidity of Mg alloy(AZ91D) have been investigated. The semi-solid ingot held for 60 minutes at the semi-solid temperature range did not contain the equilibrium volume fraction of solid as expected from the phase diagram. Therefore, in order to obtain the desired solid fractions, and to suppress the exaggerated grain growth during heating, it was required to heat the ingot rapidly up to the temperature $10^{\circ}C$ higher than the semi-solid temperature suggested from the phase diagram for a specific volume fraction of solid. The experimental results show that mold filling behaviour and fluidity can be improved with the use of the higher mold temperature and the lower volume fraction of solid, but remain nearly unaffected by the change of extrusion ratio.

  • PDF

Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties (나노유체 특성에 따른 히트파이프 성능해석)

  • Lim, Seung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.599-607
    • /
    • 2015
  • In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: $Al_2O_3$ and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.

Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.663-686
    • /
    • 2014
  • This paper deals with free vibration analysis of bidirectional functionally graded annular plates resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The fast rate of convergence of the method is shown and the results are compared against existing results in literature. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded materials.

Effects of Processing Parameters on the Mechanical Properties of Aluminium Matrix Composites (알루미늄 기지 금속복합재료의 기계적 성질에 미치는 제조변수의 영향)

  • Kim, J.D.;Koh, S.W.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.130-136
    • /
    • 2005
  • The effects of additional Mg content, the size and volume fraction of reinforcement phase on the mechanical properties of ceramic particle reinforced aluminium matrix composites fabricated by pressureless metal infiltration process were investigated. The hardness of $SiC_p/AC8A$ composites increased gradually with an increase in the additive Mg content, while the bending strength of $SiC_p/AC8A$ composites increased with an increase in additive Mg content up to 5%. However, this decreased when the level of additive Mg content was greater than 5% due to the formation of coarse precipitates by excessive Mg reaction and an increase in the porosity level. The hardness and strength of the composites increased with decreasing the size of SiC particle. It was found that the composites with smaller particles enhanced the interfacial bonding than those with bigger particles from fractography of the composites. The hardness of $Al_2O_{3p}/AC8A$ composites increased gradually with an increase in the volume fraction, however, the bending strength of $Al_2O_{3p}/AC8A$ composites decreased when the volume fraction of alumina particle was greater than 40% owing to the high porosity level.

  • PDF

Synthesis of Solid Electrolyte Nasicon by Solid State Reaction

  • Kim, Cheol-Jin;Chung, Jun-Ki;Lim, Sung-Ki;Rhee, Meung-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • Solid electroyte nasion was synthesized by the optimized solid state reaction minimizing the volume fraction of secondary $ZrO_2$ and glassy phases. To compensate for the evaporation of Na and P during heat-treatment, excess Na and P were added to the starting composition $Na_{1+x} Zr_2 Si_x P_{d-x} O_{12}$ (x=2.1). Phases pure nasicon comparable in volume fraction to the one obtaied from sol-gel process were synthesized after the reaction at $1100~1150^{\circ}C$,$ P_{O2}>=0.1-0.15 $$ZrO_2$ increased with the heat-treatment time due to the decomposition of nasicon phase and that of glassy phase increased as partial oxygen pressure decreased. The synthesized nasion showed a good electrical conductivity of $-1{\times}10^{-2}({\omega}{\cdot}cm)^{-1}$ at $350^{\circ}C$.

  • PDF