• Title/Summary/Keyword: 2D Image

Search Result 3,767, Processing Time 0.029 seconds

Detecting Rectangular Image Regions in a Window Image for 3D Conversion (3D 변환을 위한 윈도우영상에서 사각 이미지 영역 검출)

  • Gil, Jong In;Lee, Jun Seok;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.795-807
    • /
    • 2013
  • In recent years, 2D-to-3D conversion techniques have gained much attraction. Most of conventional methods focused on natural images such as movie, animation and so forth. However, it is difficult to apply these techniques to window images mixed with text, image, logo, and icon. Also, different depth values of text pixels will cause distortion and a proper 3D image can not be delivered in some situations. To solve this problem, we propose a method to classify a given image into either a window or a natural image. For the window image, only rectangular image regions (RIR) are detected and converted in 3D. Other text and background are displayed in 2D. The proposed method was performed on more than 10,000 test images. In the experimental results, the detection ratio of window image reaches 97% and RIR detection ratio is 87%.

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.

2D-3D convertible display system having a background of full-parallax integral images (완전시차 집적 영상 배경을 가지는 2D-3D 겸용 디스플레이 시스템)

  • Hong, Suk-Pyo;Shin, Dong-Hak;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.369-375
    • /
    • 2009
  • In this paper, we propose a 2D-3D convertible display system having a background of full-parallax integral images. The proposed system is composed of integral imaging system and conventional 2D flat display and is able to operate either 3D mode or 2D mode. In 3D mode, the 3D image is generated by combining the 2D main image with the background image based on integral imaging. In 2D mode, the integral imaging system plays a role as the back-light of 2D flat display and then 2D image is observed through 2D flat display. To show the usefulness of the proposed system, we carry out the preliminary experiments and present the successful experimental results.

Interactive 3D Stereoscopic Image Editing System using Image-based modeling (영상 기반 모델링 기법을 이용한 대화식 3차원 입체 영상 저작 시스템)

  • Yun, Chang-Ok;Yun, Tae-Soo;Lee, Dong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.53-66
    • /
    • 2006
  • Recent technique has shown high interest in 3D stereoscopic image, one out of high immersion appearance techniques. Unlike general 2D image, 3D stereoscopic image is generated by 3D geometric information. Therefore, the lack of 3D geometric information sometimes imposes restrictions or makes editing more tedious. We propose a new unsupervised technique aimed to generate stereoscopic image which is estimated by depth-map information using image-based modeling from a single input image. The proposed system is implemented as the Adobe Photoshop(R) plug-in for considering generality and expandability, and also supports a preview function of interactive 3D stereoscopic image to determine stereoscopic view of high quality.

  • PDF

3D Stereoscopic Image Generation of a 2D Medical Image (2D 의료영상의 3차원 입체영상 생성)

  • Kim, Man-Bae;Jang, Seong-Eun;Lee, Woo-Keun;Choi, Chang-Yeol
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.723-730
    • /
    • 2010
  • Recently, diverse 3D image processing technologies have been applied in industries. Among them, stereoscopic conversion is a technology to generate a stereoscopic image from a conventional 2D image. The technology can be applied to movie and broadcasting contents and the viewer can watch 3D stereoscopic contents. Further the stereoscopic conversion is required to be applied to other fields. Following such trend, the aim of this paper is to apply the stereoscopic conversion to medical fields. The medical images can deliver more detailed 3D information with a stereoscopic image compared with a 2D plane image. This paper presents a novel methodology for converting a 2D medical image into a 3D stereoscopic image. For this, mean shift segmentation, edge detection, intensity analysis, etc are utilized to generate a final depth map. From an image and the depth map, left and right images are constructed. In the experiment, the proposed method is performed on a medical image such as CT (Computed Tomograpy). The stereoscopic image displayed on a 3D monitor shows a satisfactory performance.

A System for Measuring 3D Human Bodies Using the Multiple 2D Images (다중 2D 영상을 이용한 3D 인체 계측 시스템)

  • 김창우;최창석;김효숙;강인애;전준현
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.1-12
    • /
    • 2003
  • This paper proposes a system for measuring the 3D human bodies using the multiple 2D images. The system establishes the multiple image input circumstance from the digital camera for image measurement. The algorithm considering perspective projection leads us to estimate the 3D human bodies from the multiple 2D images such as frontal. side and rear views. The results of the image measurement is compared those of the direct measurement and the 3D scanner for the total 40 items (12 heights, 15 widths and 13 depths). Three persons measure the 40 items using the three measurement methods. In comparison of the results obtained among the measurement methods and the persons, the results between the image measurement and the 3D scanner are very similar. However, the errors for the direct measurement are relatively larger than those between the image measurement and the 3D scanner. For example, the maximum errors between the image measurement and the 3D scanner are 0.41cm in height, 0.39cm in width and 0.95cm in depth. The errors are acceptable in body measurement. Performance of the image measurement is superior to the direct. because the algorithm estimates the 3D positions using the perspective projection. In above comparison, the image measurement is expected as a new method for measuring the 3D body, since it has the various advantages of the direct measurement and 3D scanner in performance for measurement as well as in the devices, cost, Portability and man power.

Extracting 2D-Mesh from Structured Light Image for Reconstructing 3D Faces (3차원 얼굴 복원을 위한 구조 광 영상에서의 2차원 메쉬 추출)

  • Lee, Duk-Ryong;Oh, Il-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.248-251
    • /
    • 2007
  • In this paper, we are propose a method to estimate the 2-D mesh from structured light image for reconstruction of 3-D face image. To acquire the structured light image, we are project structured light on the face using the projector. we are extract the projected cross points from the acquire image. The 2-D mesh image is extracted from the position and angle of cross points. In the extraction processing, the error was fixed to extract the correct 2-D mesh.

  • PDF

Gradual Encryption of Image using LFSR and 2D CAT (LFSR과 2D CAT를 이용한 단계적 영상 암호화)

  • Nam, Tae-Hee;Kim, Seok-Tae;Cho, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1150-1156
    • /
    • 2009
  • In this paper, we propose the gradual encryption method of image using LFSR(Linear Feedback Shift Register) and 2D CAT(Two-Dimensional Cellular Automata Transform). First, an LFSR is used to create a PN(pseudo noise) sequence, which is identical to the size of the original image. Then the created sequence goes through an XOR operation with the original image resulting to the first encrypted image. Next, the gateway value is set to produce a 2D CAT basis function.The created basis function multiplied with the first encrypted image produces the 2D CAT encrypted image which is the final output. Lastly, the stability analysis verifies that the proposed method holds a high encryption quality status.

Statistical analysis for RMSE of 3D space calibration using the DLT (DLT를 이용한 3차원 공간검증시 RMSE에 대한 통계학적 분석)

  • Lee, Hyun-Seob;Kim, Ky-Hyeung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to design the method of 3D space calibration to reduce RMSE by statistical analysis when using the DLT algorithm and control frame. Control frame for 3D space calibration was consist of $1{\times}3{\times}2m$ and 162 contort points adhere to it. For calculate of 3D coordination used two methods about 2D coordination on image frame, 2D coordinate on each image frame and mean coordination. The methods of statistical analysis used one-way ANOVA and T-test. Significant level was ${\alpha}=.05$. The compose of methods for reduce RMSE were as follow. 1. Use the control frame composed of 24-44 control points arranged equally. 2. When photographing, locate control frame to center of image plane(image frame) o. use the lens of a few distortion. 3. When calculate of 3D coordination, use mean of 2D coordinate obtainable from all image frames.

Change of Phoria and Subjective Symptoms after Watching 2D and 3D Image (2D와 3D 영상 시청 후 나타난 사위도 및 자각증상의 변화)

  • Kim, Dong-Su;Lee, Wook-Jin;Kim, Jae-Do;Yu, Dong-Sik;Jeong, Eui Tae;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.185-194
    • /
    • 2012
  • Purpose: The changes of phoria and subjective asthenopia before and after viewing were compared based on 2D image and two ways of 3D images, and presented for references of 3D image watching and production. Methods: Change in phoria was measured before and after watching 2D image, 3D-FPR and 3D-SG images for 30 minutes with a target of 41 university students at 20-30 years old (male 26, female 15). Paired t-test and Pearson correlation between changed phoria and subjective symptoms which were measured using questionnaires were evaluated by before and after watching each images. Results: Right after watching 2D image, exophoria was increased by 0.5 $\Delta$, in distance and near, but it was not a significant level. Right after watching 3D image, exophoria was increased by 1.0~1.5 $\Delta$, and 1.5~2.0 $\Delta$, in distance and near, respectively when compared with before watching. In the significant level, exophoria tended to increase. Changes in near was increased more by 0.5 $\Delta$, compared with those in distance. Changes based on way of 3D-FPR and 3D-SG image were less than 0.5 $\Delta$, and there was almost no difference. In terms of visual subjective symptoms, eye strain was increased in 3D image compared with that in 2D image. In addition, there was no difference depending on way of image. In terms of Pearson correlation between phoria change and eye strain, as exophoria was increased, eye strain was increased. Conclusions: Watching 3D image increased eye strain compared with watching 2D image, and accordingly exophoria tended to increase.