• Title/Summary/Keyword: 2D Homography

Search Result 27, Processing Time 0.023 seconds

A Study on registration using homography for 3D modeling (호모그래피를 이용한 3D 모델링을 위한 데이터 정합에 관한 연구)

  • Kim, Sang-Hoon
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.521-526
    • /
    • 2014
  • The purpose of this study is to propose the efficient method of 3D data registration. Three-dimensional data including the two-dimensional image acquisition apparatus and the position information are acquired at an arbitrary angle with each other. This paper proposes the more accurate and faster matching method by using this information. Four image points founded from 2D images match the volumetric size of the model and compute the homography of the axis for registration between two 3D data sets. The advantages of the proposed algorithm are the repeating process is unnecessary and the process time is faster than prvious method.

Improvement of Inter prediction by using Homography Reference Picture (Homography 참조 픽처를 사용한 화면 간 예측 효율 향상 방법)

  • Kim, Tae Hyun;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.397-400
    • /
    • 2017
  • Recently, a lot of images containing various global movements have been generated by the activation of the photographic equipment such as the drone and the action cam. In this case, when the motion such as rotation, scaling is generated, it is difficult to expect a high coding efficiency in the conventional inter-picture prediction method using the 2D motion vector. In this paper, we propose a video coding method that reflects global motion through homography reference pictures. As a proposed method, there are 1) a method of generating a new reference picture by grasping a global motion relation between a current picture and a reference picture by homography, and 2) a method of utilizing a homography reference picture for inter-picture prediction. The experiment was applied to the HEVC reference software HM 14.0, and the experimental result showed an increase in encoding efficiency of 6.6% based on RA. Especially, the results using the videos with rotational motion have a maximum coding efficiency of 32.6%, which is expected to show high efficiency in video, which is often represented by complex global motion such as drones.

Geometric Image Compensation Method for a Portable Projector Based on Prewarping Using 2D Homography

  • Cho, Jinsoo;Won, Jongkil;Bae, Jongwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2299-2311
    • /
    • 2013
  • As portable multimedia devices become more popular and smaller, the use of portable projectors is also rapidly increasing. However, when portable projectors are used in mobile environments in which a dedicated planar screen is not available, the problem of geometric distortion of the projected image often arises. In this paper, we present a geometric image compensation method for portable projectors to compensate for geometric distortions of images projected on various types of planar or nonplanar projection surfaces. The proposed method is based on extraction of the two-dimensional (2D) geometric information of a projection area, setting of the compensation area, and prewarping using 2D homography. The experimental results show that the proposed method allows effective compensation for waved and arbitrarily shaped projection areas, as well as tilted and bent surfaces that are often found in the mobile environment. Furthermore, the proposed method is more computationally efficient than conventional image compensation methods that use 3D geometric information.

Camera Motion Parameter Estimation Technique using 2D Homography and LM Method based on Invariant Features

  • Cha, Jeong-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.297-301
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

Detection of the co-planar feature points in the three dimensional space (3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.499-508
    • /
    • 2023
  • In this paper, we propose a technique to estimate the coordinates of feature points existing on a 2D planar object in the three dimensional space. The proposed method detects multiple 3D features from the image, and excludes those which are not located on the plane. The proposed technique estimates the planar homography between the planar object in the 3D space and the camera image plane, and computes back-projection error of each feature point on the planar object. Then any feature points which have large error is considered as off-plane points and are excluded from the feature estimation phase. The proposed method is archived on the basis of the planar homography without any additional sensors or optimization algorithms. In the expretiments, it was confirmed that the speed of the proposed method is more than 40 frames per second. In addition, compared to the RGB-D camera, there was no significant difference in processing speed, and it was verified that the frame rate was unaffected even in the situation that the number of detected feature points continuously increased.

A New Shape-Based Object Category Recognition Technique using Affine Category Shape Model (Affine Category Shape Model을 이용한 형태 기반 범주 물체 인식 기법)

  • Kim, Dong-Hwan;Choi, Yu-Kyung;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • This paper presents a new shape-based algorithm using affine category shape model for object category recognition and model learning. Affine category shape model is a graph of interconnected nodes whose geometric interactions are modeled using pairwise potentials. In its learning phase, it can efficiently handle large pose variations of objects in training images by estimating 2-D homography transformation between the model and the training images. Since the pairwise potentials are defined on only relative geometric relationship betweenfeatures, the proposed matching algorithm is translation and in-plane rotation invariant and robust to affine transformation. We apply spectral matching algorithm to find feature correspondences, which are then used as initial correspondences for RANSAC algorithm. The 2-D homography transformation and the inlier correspondences which are consistent with this estimate can be efficiently estimated through RANSAC, and new correspondences also can be detected by using the estimated 2-D homography transformation. Experimental results on object category database show that the proposed algorithm is robust to pose variation of objects and provides good recognition performance.

  • PDF

Vision based 3D Hand Interface Using Virtual Two-View Method (가상 양시점화 방법을 이용한 비전기반 3차원 손 인터페이스)

  • Bae, Dong-Hee;Kim, Jin-Mo
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.43-54
    • /
    • 2013
  • With the consistent development of the 3D application technique, visuals are available at more realistic quality and are utilized in many applications like game. In particular, interacting with 3D objects in virtual environments, 3D graphics have led to a substantial development in the augmented reality. This study proposes a 3D user interface to control objects in 3D space through virtual two-view method using only one camera. To do so, homography matrix including transformation information between arbitrary two positions of camera is calculated and 3D coordinates are reconstructed by employing the 2D hand coordinates derived from the single camera, homography matrix and projection matrix of camera. This method will result in more accurate and quick 3D information. This approach may be advantageous with respect to the reduced amount of calculation needed for using one camera rather than two and may be effective at the same time for real-time processes while it is economically efficient.

Camera Extrinsic Parameter Estimation using 2D Homography and Nonlinear Minimizing Method based on Geometric Invariance Vector (기하학적 불변벡터 기탄 2D 호모그래피와 비선형 최소화기법을 이용한 카메라 외부인수 측정)

  • Cha, Jeong-Hee
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.187-197
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features, Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time, The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum, In order to complement these shortfalls, we, first proposed constructing feature models using invariant vector of geometry, Secondly, we proposed a two-stage calculation method to improve accuracy and convergence by using 2D homography and LM method, In the experiment, we compared and analyzed the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

  • PDF

Camera Extrinsic Parameter Estimation using 2D Homography and LM Method based on PPIV Recognition (PPIV 인식기반 2D 호모그래피와 LM방법을 이용한 카메라 외부인수 산출)

  • Cha Jeong-Hee;Jeon Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.2 s.308
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper, we propose a method to estimate camera extrinsic parameter based on projective and permutation invariance point features. Because feature informations in previous research is variant to c.:men viewpoint, extraction of correspondent point is difficult. Therefore, in this paper, we propose the extracting method of invariant point features, and new matching method using similarity evaluation function and Graham search method for reducing time complexity and finding correspondent points accurately. In the calculation of camera extrinsic parameter stage, we also propose two-stage motion parameter estimation method for enhancing convergent degree of LM algorithm. In the experiment, we compare and analyse the proposed method with existing method by using various indoor images to demonstrate the superiority of the proposed algorithms.

Efficient and Robust Correspondence Detection between Unbalanced Stereo Images

  • Kim, Yong-Ho;Kim, Jong-Su;Lee, Sangkeun;Choi, Jong-Soo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • This paper presents an efficient and robust approach for determining the correspondence between unbalanced stereo images. The disparity vectors were used instead of feature points, such as corners, to calculate a correspondence relationship. For a faster and optimal estimation, the vectors were classified into several regions, and the homography of each region was calculated using the RANSAC algorithm. The correspondence image was calculated from the images transformed by each homography. Although it provided good results under normal conditions, it was difficult to obtain reliable results in an unbalanced stereo pair. Therefore, a balancing method is also proposed to minimize the unbalance effects using the histogram specification and structural similarity index. The experimental results showed that the proposed approach outperformed the baseline algorithms with respect to the speed and peak-signal-to-noise ratio. This work can be applied to practical fields including 3D depth map acquisition, fast stereo coding, 2D-to-3D conversion, etc.

  • PDF