• Title/Summary/Keyword: 2D Drawings

Search Result 182, Processing Time 0.028 seconds

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

How to automatically extract 2D deliverables from BIM?

  • Kim, Yije;Chin, Sangyoon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1253-1253
    • /
    • 2022
  • Although the construction industry is changing from a 2D-based to a 3D BIM-based management process, 2D drawings are still used as standards for permits and construction. For this reason, 2D deliverables extracted from 3D BIM are one of the essential achievements of BIM projects. However, due to technical and institutional problems that exist in practice, the process of extracting 2D deliverables from BIM requires additional work beyond generating 3D BIM models. In addition, the consistency of data between 3D BIM models and 2D deliverables is low, which is a major factor hindering work productivity in practice. To solve this problem, it is necessary to build BIM data that meets information requirements (IRs) for extracting 2D deliverables to minimize the amount of work of users and maximize the utilization of BIM data. However, despite this, the additional work that occurs in the BIM process for drawing creation is still a burden on BIM users. To solve this problem, the purpose of this study is to increase the productivity of the BIM process by automating the process of extracting 2D deliverables from BIM and securing data consistency between the BIM model and 2D deliverables. For this, an expert interview was conducted, and the requirements for automation of the process of extracting 2D deliverables from BIM were analyzed. Based on the requirements, the types of drawings and drawing expression elements that require automation of drawing generation in the design development stage were derived. Finally, the method for developing automation technology targeting elements that require automation was classified and analyzed, and the process for automatically extracting BIM-based 2D deliverables through templates and rule-based automation modules were derived. At this time, the automation module was developed as an add-on to Revit software, a representative BIM authoring tool, and 120 rule-based automation rulesets, and the combinations of these rulesets were used to automatically generate 2D deliverables from BIM. Through this, it was possible to automatically create about 80% of drawing expression elements, and it was possible to simplify the user's work process compared to the existing work. Through the automation process proposed in this study, it is expected that the productivity of extracting 2D deliverables from BIM will increase, thereby increasing the practical value of BIM utilization.

  • PDF

단면도를 이용한 3차원 파라메트릭 설계

  • Kim, Byung-In;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.3
    • /
    • pp.35-53
    • /
    • 1994
  • Orthographic views ore traditionally used for engineering drawings. This paper presents a methodology for 3D parametric design using orthographic views. The parametric design technique, which is used to design 2D orthographic views, is based on production rules. In the production rule-base, several view interrelation rules and over 50 geometric rules are included. An efficient algorithm is also developed to expedite the reasoning process. For 3D object construction from orthographic views, the approach known as bottom-up geometrical approach is used. The approach consists of 4 steps : 1) generation of wire-frame, 2) construction of face from wire frame, 3) formation of 3D subobjects from faces, and 4) construction of final 3D objects. Curvilinear solids as well as planar solids can be constructed. A method of converting existing 2D CAD data to parametric 3D CAD data is also presented.

  • PDF

Development of Parametric BIM Libraries for Civil Structures using National 2D Standard Drawings (국가 표준도를 이용한 토목 구조물 BIM 파라메트릭 라이브러리 구축에 관한 연구)

  • Kim, Cheong-Woon;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.128-138
    • /
    • 2014
  • Development of infrastructure component libraries is a critical requirement for the accelerated adoption of BIM in the civil engineering sector. Libraries reduce the time for BIM model creation, allows accurate quantity take offs, and shared use of standard models in a project. However, such libraries are currently in very short supply in the domestic infrastructure domain. This research introduces library components for retaining walls and box culverts generated from 2D standard drawings made publicly available by MOLIT. Commercial BIM software was used to create the concrete geometry and rebar, and dimensional/volumetric parameters were defined to maximize the reuse and generality of the libraries. Use of the these libraries in a project context demonstrates that they allow accurate and quick quantity take offs, and easier management of geometric information through the use of a single library as to numerous 2D drawings. It also demonstrates the easy modification of the geometries of the components if and when they need to changed. However, the application also showed that some of the rebar components (stirrups and length wise rebars) do not get properly updated when concrete geometries are changed, demonstrating the limits of current software applications. The research provides evidence of the many advantages of using BIM libraries in the civil engineering, thus providing the incentive for further development of standard libraries and promoting the use of BIM in infrastructure projects.

A Development of Offshore plant Piping Process Monitoring System Based on 3D CAD Model (3D CAD 모델 기반 해양플랜트 배관 공정 모니터링 시스템 개발)

  • Kim, Hyun-Cheol;Lee, Gyu-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.58-65
    • /
    • 2020
  • 3D Models of offshore plant piping materials designed by 3D CAD systems are provided to the production processes in the form of 2D piping drawings and 2D piping installation drawings. In addition to the standard engineering information, the purchasing, procurement, manufacturing, installation, and inspection of raw materials are managed systematically in an integrated process control system. The existing integrated process management system can help reduce the processing time by managing the flow and progress of resources systematically, but it does not include 3D design model information. Hence, it is difficult to understand complicated pipe structures before installing the pipe. In addition, when design changes or immediate design modifications are required, it is difficult to find related data or exchange information quickly with each other. To solve this problem, an offshore plant-piping process-monitoring system was developed based on a 3D model. The 3D model-based piping monitoring system is based on Visual Studio 2017 C# and UNITY3D so that the piping-process work information can be linked to the 3D CAD model in real time. In addition, the 3D model could check the progress of the pipe installation process, such as block, size, and material, and the progress of functional inspection items, such as cleaning, hydraulic inspection, and pneumatic inspection.

A basic study 3D model advancement method for nuclear power plant (원자력 발전설비의 3D 모델 상세화 방안에 대한 기초 연구)

  • Lim, Byung-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.37-38
    • /
    • 2018
  • BIM(Building Information Modeling) in the architecture, VDC(Virtual Design and Construction) defined CIFE(Center for Integrated Facility Engineering) of Stanford university in USA, and Data-driven design definition issued by TECDOC-1284 of IAEA are doing data-level design generated by 3D CAD technology, integrating and managing related information based on the 3D model, and Using 3D models effectively during nuclear power plant life cycle. 3D model of domestic nuclear power industry is using interference review between design fields, 4D system linked 3D construction model and schedule activity, but the 3D model generated in the design phase is effectively not utilized during the construction, operation, decommissioning. therefore, This study is aimed to suggest 3D model LOD(Level of Detail) advancement method through the analysis of existing literature, 2D drawings, and 3D models throughout nuclear power plant lifecycle.

  • PDF

3D Digital modeling Method for Concept Developing Process in Architectural Design & Drawing (설계 및 도면작성단계에서의 디지털모델링방법연구 I)

  • Koh, In-Lyong;Dong, Jae-Uk
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • The purpose of this study is to suggest the possibility which can use as instrument of design by CAD system. And it proposes how makes 3D object model through 2D Drawings in Design process. This study has review the 'Study Drawing' in design process, and application method of CAD as the Architectural Design Integration System. The Architecture can work in ani of the traditional 2D representations as well as in 3D and immediate visual feedback of his work in isometric and perspective projrctions.

  • PDF

User-Guidable Abstract Line Drawing of 2D Images (사용자 제어가 용이한 이차원 영상의 추상화된 라인 드로잉 생성)

  • Son, Min-Jung;Lee, Yun-Jin;Kang, Hen-Ry;Lee, Seung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.110-125
    • /
    • 2010
  • We present a novel scheme for generating line drawings from 2D images, aiming to facilitate effective visual communication. In contrast to conventional edge detectors, our technique imitates the human line drawing process to generate lines effectively and intuitively. Our technique consists of three parts: line extraction, line rendering, and user guidance. In line extraction, we extract lines by estimating a likelihood function to effectively find the genuine shape boundaries. In line rendering, we consider the feature scale and the blurriness of lines with which the detail and the focus-level of lines are controlled. We also employ stroke textures to provide a variety of illustration styles. User guidance is allowed to modify the shapes and positions of lines interactively, where immediate response is provided by GPU implementation of most line extraction operations. Experimental results demonstrate that our technique generates various kinds of line drawings from 2D images enabled by the control over detail, focus, and style.

Structural health monitoring and resilient assessment by novel intelligent models

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.339-360
    • /
    • 2023
  • In this paper, to assess the performance of a multi-span simply supported RC bridge, the dynamic characteristics of the bridge were measured and determined by structural health monitoring and resilient assessment via operational modal analysis as well as FE modeling. Supporting finite element (FE) models were created and analyzed according to the design drawings. This study used 2D plane monitoring of locations of hole in the infill wall and used 3D health monitoring and resilient assessment. From the results of 3Dsymmetric frame, if the frame is unsymmetrical, the used model can lead to the reduction in the internal forces. The recommendations from this study is from some discrepancies observed between 2D and 3D models, if possible 3D model should be used in analyzing the real frames.

Hint-based Reconstruction of Interacting Solids of Revolution from Orthographic Projections (2차원 도면에서 교차하는 회전체 형상의 복원)

  • Han S.H.;Lee H.M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.392-401
    • /
    • 2005
  • 2D CAD is being replaced by 3D CAD to improve efficiency of product design and manufacturing. Therefore, converting legacy 2D drawings into 3D solid models is required. CSG based approaches construct solid models from orthographic views more efficiently than traditional B-rep based approaches. A major limitation of CSG based approaches has been the limited domain of objects that can be handled. This paper aims at extending the capabilities of CSG based approaches by proposing hint-based recognition of interacting solids of revolution which can handle interacting solids of revolution as well as isolated solids of revolution.