• Title/Summary/Keyword: 2D Dataset

Search Result 208, Processing Time 0.021 seconds

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

A Computationally Efficient Optimal Allocation Algorithms for Large Data

  • Kwon, Il-Hyung;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.561-572
    • /
    • 2007
  • In this paper, we describe various efficient optimization algorithms for obtaining an optimal customer allocation in the telephone call center. The main advantages of the proposed algorithms are simple, fast and very attractive for massive dataset. The proposed algorithms also provide comparable performance with the other more sophisticated linear programming methods. The proposed optimal allocation algorithms increase the customer contact, response rate and management product and optimize the performance of call centers. Simulation results are given to demonstrate the effectiveness of our algorithms.

  • PDF

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

[Retracted]Design and Implementation of Optimized Profile through analysis of Navigation Data Analysis of Unmanned Aerial Vehicle ([논문철회]무인비행기의 항행 데이터 분석을 통한 최적화된 프로파일 설계 및 구현)

  • Lee, Won Jin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.237-246
    • /
    • 2022
  • Among the technologies of the 4th industrial revolution, drones that have grown rapidly and are being used in various industries can be operated by the pilot directly or can be operated automatically through programming. In order to be controlled by a pilot or to operate automatically, it is essential to predict and analyze the optimal path for the drone to move without obstacles. In this paper, after securing and analyzing the pilot training dataset through the unmanned aerial vehicle piloting training platform designed through prior research, the profile of the dataset that should be preceded to search and derive the optimal route of the unmanned aerial vehicle was designed. The drone pilot training data includes the speed, movement distance, and angle of the drone, and the data set is visualized to unify the properties showing the same pattern into one and preprocess the properties showing the outliers. It is expected that the proposed big data-based profile can be used to predict and analyze the optimal movement path of an unmanned aerial vehicle.

3D Reconstruction of a Single Clothing Image and Its Application to Image-based Virtual Try-On (의상 이미지의 3차원 의상 복원 방법과 가상착용 응용)

  • Ahn, Heejune;Minar, Matiur Rahman
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.1-11
    • /
    • 2020
  • Image-based virtual try-on (VTON) is becoming popular for online apparel shopping, mainly because of not requiring 3D information for try-on clothes and target humans. However, existing 2D algorithms, even when utilizing advanced non-rigid deformation algorithms, cannot handle large spatial transformations for complex target human poses. In this study, we propose a 3D clothing reconstruction method using a 3D human body model. The resulting 3D models of try-on clothes can be more easily deformed when applied to rest posed standard human models. Then, the poses and shapes of 3D clothing models can be transferred to the target human models estimated from 2D images. Finally, the deformed clothing models can be rendered and blended with target human representations. Experimental results with the VITON dataset used in the previous works show that the shapes of reconstructed clothing are significantly more natural, compared to the 2D image-based deformation results when human poses and shapes are estimated accurately.

Application of Point Cloud Based Hull Structure Deformation Detection Algorithm (포인트 클라우드 기반 선체 구조 변형 탐지 알고리즘 적용 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • As ship condition inspection technology has been developed, research on collecting, analyzing, and diagnosing condition information has become active. In ships, related research has been conducted, such as analyzing, detecting, and classifying major hull failures such as cracks and corrosion using 2D and 3D data information. However, for geometric deformation such as indents and bulges, 2D data has limitations in detection, so 3D data is needed to utilize spatial feature information. In this study, we aim to detect hull structural deformation positions. It builds a specimen based on actual hull structure deformation and acquires a point cloud from a model scanned with a 3D scanner. In the obtained point cloud, deformation(outliers) is found with a combination of RANSAC algorithms that find the best matching model in the Octree data structure and dataset.

Clinical Applications of Neuroimaging with Susceptibility Weighted Imaging: Review Article (SWI의 신경영상분야의 임상적 이용)

  • Roh, Keuntak;Kang, Hyunkoo;Kim, Injoong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.290-302
    • /
    • 2014
  • Purpose : Susceptibility-weighted magnetic resonance (MR) sequence is three-dimensional (3D), spoiled gradient-echo pulse sequences that provide a high sensitivity for the detection of blood degradation products, calcifications, and iron deposits. This pictorial review is aimed at illustrating and discussing its main clinical applications. Materials and Methods: SWI is based on high-resolution, 3D, fully velocity-compensated gradient-echo sequences using both magnitude and phase images. To enhance the visibility of the venous structures, the magnitude images are multiplied with a phase mask generated from the filtered phase data, which are displayed at best after post-processing of the 3D dataset with the minimal intensity projection algorithm. A total of 200 patients underwent MR examinations that included SWI on a 3 tesla MR imager were enrolled. Results: SWI is very useful in detecting multiple brain disorders. Among the 200 patients, 80 showed developmental venous anomaly, 22 showed cavernous malformation, 12 showed calcifications in various conditions, 21 showed cerebrovascular accident with susceptibility vessel sign or microbleeds, 52 showed brain tumors, 2 showed diffuse axonal injury, 3 showed arteriovenous malformation, 5 showed dural arteriovenous fistula, 1 showed moyamoya disease, and 2 showed Parkinson's disease. Conclusion: SWI is useful in detecting occult low flow vascular lesions, calcification and microbleed and characterising diverse brain disorders.

Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

  • Guerrero, Maria Eugenia;Noriega, Jorge;Castro, Carmen;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • Purpose: The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. Materials and Methods: One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image data-sets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. Results: All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Conclusion: Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

Design of Robust Face Recognition Pattern Classifier Using Interval Type-2 RBF Neural Networks Based on Census Transform Method (Interval Type-2 RBF 신경회로망 기반 CT 기법을 이용한 강인한 얼굴인식 패턴 분류기 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.755-765
    • /
    • 2015
  • This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.

Motion Estimation Using 3-D Straight Lines (3차원 직선을 이용한 카메라 모션 추정)

  • Lee, Jin Han;Zhang, Guoxuan;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.300-309
    • /
    • 2016
  • This paper proposes a method for motion estimation of consecutive cameras using 3-D straight lines. The motion estimation algorithm uses two non-parallel 3-D line correspondences to quickly establish an initial guess for the relative pose of adjacent frames, which requires less correspondences than that of current approaches requiring three correspondences when using 3-D points or 3-D planes. The estimated motion is further refined by a nonlinear optimization technique with inlier correspondences for higher accuracy. Since there is no dominant line representation in 3-D space, we simulate two line representations, which can be thought as mainly adopted methods in the field, and verify one as the best choice from the simulation results. We also propose a simple but effective 3-D line fitting algorithm considering the fact that the variance arises in the projective directions thus can be reduced to 2-D fitting problem. We provide experimental results of the proposed motion estimation system comparing with state-of-the-art algorithms using an open benchmark dataset.