• Title/Summary/Keyword: 2009 개정 과학교과서

Search Result 81, Processing Time 0.021 seconds

Analysis of 2009 Revised Chemistry I Textbooks Based on STEAM Aspect (STEAM 관점에서 2009 개정 화학 I 교과서 분석)

  • Bok, Juri;Jang, Nak Han
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.381-393
    • /
    • 2012
  • This study was analyzed that what kind of elements for STEAM, except scientific commonsense, are contained in 2009 revised chemistry textbooks I for high school students. So first, elements of STEAM in textbooks were examined by following three sections; by publishing company, each unit and area of textbook. For reference, new sub-elements of STEAM were set because existing elements of STEAM is incongruent with current textbooks. As a result, most chemistry textbooks included elements of STEAM properly for inter-related learning with the other fields. Every textbook had its unique learning methods for utilizing elements of STEAM and they were unified as one way. Depending on textbooks, learning methods were little bit different from the others. Also, detailed elements of STEAM contained in textbooks were classified just 14 types. And they were even focused on a few elements according to sort of textbook. Thus, it seemed that there was a certain limitation of current education of STEAM in chemistry Field. By the unit, according to the curriculum, contained elements of STEAM were different. Almost all elements of STEAM were located in I section. Consequently, it is difficult to include elements of STEAM if mathematics or history were not existed in curriculum. Lastly, by the area, most of all elements of STEAM were included in reference section. Almost all elements of STEAM were focused on art and culture. Thus, STEAM was used for utilization about chemical knowledge in substance. Otherwise, convergence training for approach method was not enough in chemical knowledge.

  • PDF

Analysis of Integrated Oceanic Current Maps in Science and Earth Science Textbooks of Secondary School Based on 2015 Revised Curriculum (2015 개정 교육과정 기반 중등학교 과학 및 지구과학 교과서의 통합 해류도 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Park, Jae-Jin;Lee, Eunil;Byun, Do-Seong;Kang, Boon-Soon;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.248-260
    • /
    • 2020
  • Oceanic current maps introduced in science and earth science textbooks can offer a valuable opportunity for students to learn about rapid climate change and the role of currents associated with the global energy balance problem. Previously developed oceanic current maps in middle and high school textbooks under the 2007 and 2009-revised national curriculum contained various errors in terms of scientific accuracy. To resolve these problems, marine experts have constructed a unified oceanographic map of the oceans surrounding the Korean Peninsula. Since 2010, this process has involved a continuous, long-term consultation procedure. By extensively gathering opinions and through verification process, a representative and scientific oceanic current map was eventually constructed. Based on this, the educational oceanic current maps, targeting the comprehension of middle and high school students, were developed. These maps were incorporated into middle and high school textbooks in accordance with the revised 2015 curriculum. In this study, we analyzed the oceanic current maps of five middle school science textbooks and six earth science textbooks that were published in high school in 2019. Although all the oceanic current maps in the textbooks were unified based on the proposed scientific oceanic current maps, there were problems such as the omission of certain oceanic currents or the use of a combination of dotted and solid lines. Moreover, several textbooks were found to be using incorrect names for oceanic currents. This study suggests that oceanic current maps, produced by integrating scientific knowledge, should be visually accurate and utilized appropriately to avoid students' misconception.

Analyses of Salinity Unit in the Secondary School Science Textbook and Suggestion for Its Correction (중등 과학교과서에서 사용된 염분 단위 분석 및 단위 개정을 위한 제안)

  • Park, Kyung-Ae;Choi, Ji-Young
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.513-526
    • /
    • 2009
  • It has long been that the unit of oceanic salinity changed from permil (%o) to other unit. However, the middle-and high- school textbooks of science and earth science have still used %o as salinity unit that was defined a long time ago. The objectives of this study are to briefly discuss about the historical development of change in salinity unit and measurement techniques, to present differences between the salinity units of psu (practical salinity unit) and %o, and to address the need and validity for the correction of salinity unit in the textbooks. Twenty-seven kinds of textbooks based on the 7th National Curriculum were analyzed to investigate the expression of salinity unit and the definition of salinity. The results were compared with the usage of salinity units in the articles published in Journal of Korean Society of Oceanography from 1967 to 2008. The percentages by the use of %o were 96.3% in the text and 83.8% in the graphs or tables of the textbooks. By contrast, the scientific papers began to use psu from 1994 and then %o has seldom been used since 2004.

Research Trends of Elementary Science Textbook: Focus on Papers Published in Domestic Journals in the Last Twenty Years (최근 20년 동안의 초등 과학 교과서 연구 동향 분석)

  • Namhoon, Kim;Hyoungjin, Kim;Sukjin, Jung;Dongseok, Kim;Jisuk, Kim;Heejun, Lim
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.5
    • /
    • pp.487-499
    • /
    • 2022
  • This study aims to understand the trends and characteristics of elementary science textbook research. For this purpose, among the papers published in science-related journals from 2001 to 2021, 156 studies related to elementary science textbooks were analyzed to examine the research trends on textbook analysis. The analysis criteria consisted of two major categories, 'outward feature' and 'topic.' The subcategories of 'outward feature' consist of 'year of publication,' 'target curriculum,' 'target grade,' 'science content area,' 'subject of study,' and 'publishing institution.' The sub-categories of 'topic' consist of 'comparison,' 'content,' 'illustration,' 'inquiry activity,' 'perception of textbooks,' and 'others.' As a result of the analysis on 'outer feature,' textbook-related research was conducted almost every year, and the research on the 2009 revised science curriculum, on the 3-6 grades, and on the whole field of science had the most. The science textbook researches were published not only in science education-related journals but also in other areas' journals. As a result of the analysis of the 'topic,' the number of papers was higher in the order of comparative research, content analysis, illustration, inquiry activities, and perception of textbooks. Implications for accredited textbook system of elementary science were discussed based on the analyses on the elementary science textbook research trends.

Development and Application of $21^{st}$ Century Scientific Literacy Evaluation Framework on Korean High School Science Text Books (21세기 과학적 소양 평가기준 개발 및 교과서 내용 분석에의 적용)

  • Mun, Kongju;Mun, Jiyeong;Cho, Miyoung;Chung, Yoonsook;Kim, Sung-Won;Krajcik, Joseph
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.789-804
    • /
    • 2012
  • We developed $21^{st}$ century scientific literacy assessment instrument and applied it to explore the contents of seven Korean science textbooks. The $21^{st}$ century scientific literacy assessment instrument involved three dimensions (habits of mind, character and values, science as human endeavor). Each dimension consists of three sub-dimensions. Five science education experts assessed the content of textbook using criteria. We discussed issues in which the examiners responses did not match and reached an agreement on initial disagreement. As a result, we found that most Korean textbook contained contents on habits of mind, especially, communication, collaboration, and information management. We also found that most materials lacked information about character and values and science as human endeavor. Based on the result, we suggest that researchers and science educators need to consider all dimensions of the $21^{st}$ century scientific literacy when they develop curriculum and teaching materials. In addition, the rubric for $21^{st}$ century scientific literacy can be adopted as an assessment tool for examining curriculum, teaching materials.

An Analysis of the Definition and the Meaning Used for the Terms of Heat and Thermal Energy in the Science Textbooks (과학과 교과서에 나타난 열과 열에너지 용어의 정의 및 사용 의미 분석)

  • Kim, Serim;Park, Jong-Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.214-225
    • /
    • 2018
  • In this study, we tried to find out how heat and thermal energy terms are defined and used in Korean science textbooks, and to see if there are any differences in the meaning of these terms used in different areas of science. For this purpose, the contents of 52 science textbooks of elementary, middle and high school published by the 2009 revised curriculum were analyzed. The definition of the term heat is given in the middle school Science(1) and the high school Physics I and II textbooks. Most textbooks define heat as "energy transferred due to a temperature difference (Type I)". Only one textbook of Physics I defines heat as "transfer of energy due to a temperature difference (Type II)". The definition of thermal energy is mostly presented in the middle school Science (2) and the high school Physics I textbooks. Physics I textbooks define the thermal energy as "molecular kinetic energy (Type III)", while Science(2) textbooks define it as Type I or "energy causes temperature change or phase transition of matter (Type IV)". In the texts of textbooks, heat is mainly used as the meaning of Type I or Type III. Thermal energy is mainly used as Type III, but it is also used as Type I in the high school Physics and Chemistry textbooks. The meanings of heat and thermal energy terms used are differed by the area of science. They are mainly used as type I or type III in Physics and Chemistry textbooks, and used as type III in Life Science and Earth Science textbooks.

An Analysis of STEAM Elements included in the Elementary School Mathematics Textbooks Revised on 2009 - Focusing on the 3rd and 4th Grade Group - (2009 개정 교육과정에 따른 초등수학교과서의 STEAM 요소 분석: 3~4학년군을 중심으로)

  • Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.235-247
    • /
    • 2015
  • This study analyzed what STEAM elements, except mathematical content, are contained in 2009 revised elementary school 3rd and 4th grade group mathematics textbooks. STEAM elements in the textbooks were examined by grade and by content area in the elementary school mathematics curriculum. According to the results, the difference between 3rd and 4th grade in the number of STEAM elements is almost not visible. Distribution of specific content areas could be seen that the distribution STEAM element is similar to the percentage distribution of the content area. However, the number of STEAM elements are different depending on the type of STEAM. The number of arts element is 448(67.6%) and this elements are seen the most. The number of representative art and cultural art is 344(51.9%) and 104(15.7%), respectively. The number of technology-engineering and science is 160(24.1%) and 55(8.3%), respectively. We need to developed to promote use of science element in next mathematics curriculum.

A Survey on the Management Status and Science Teachers' Perception of Science in High School Based on 2009 Curriculum Revision (2009 개정 고등학교 '과학'의 운영 실태와 교사들의 인식 조사)

  • Shin, Young-Ok;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.10
    • /
    • pp.1599-1612
    • /
    • 2012
  • The purpose of this study was to examine the management status of science in senior high schools based on the 2009 Curriculum Revision and the science teachers' perception of the content and a class of science. The way of managing a class was surveyed and discovered that the percentage of more than two teachers giving lessons depending on their major was higher than that of a teacher giving all the lessons. Analysis of teachers' perceptions of the content of science showed that science textbooks reflected the revised science curriculum well. However, teachers thought that the terms and concepts introduced to describe the knowledge of frontier science were so difficult that they feel it's very hard teaching them to the students. Even though science teachers thought that science was mainly focused on cultivating scientific literacy of the students, they assess mostly understanding of science concepts on the students. It means that science teachers stay in line with old position in assessment.

Korean High School Students' Perception and Understanding of Highly Metaphorical Science Terminologies (은유적 과학 용어들에 대한 고등학생들의 인식 및 이해도 조사)

  • Kim, Youngmin;Hong, Sung-Hee;Kim, Jae-Kwon
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.718-734
    • /
    • 2013
  • The purpose of the study is to investigate high school students' perception and understanding of old metaphorical science terminologies and new metaphorical science terminologies (highly metaphorical science terminologies). For the study, three old metaphorical terminologies and three new metaphorical terminologies have been chosen from the old and new Korean science curricula respectively, and 176 high school students who learned physics based on 7th science curriculum developed in 1997 and 175 highschool students who learned physics based on the science curriculum revised in 2009 were sampled from two high schools in a big city in Korea. The research results are as follows: First, for the old metaphorical terminologies, there are more students who give explanations using scientific terms than those who use the meaning of the metaphors that terminologies had. Second, for the new metaphorical terminologies, there are much less students who give explanations using scientific terms than those who explained using the meaning of the metaphors that the terminologies had. Therefore, it should be emphasized that, for the new metaphorical terminologies, the metaphorical meaning of the terminologies do not mean the concepts themselves in teaching science.

Building Korean Science Textbook Corpus (K-STeC) for research of Scientific Language in Education (교육용 과학언어 연구를 위한 범용 자료로서 과학교과서 말뭉치 K-STeC(Korean Science Textbook Corpus) 구축)

  • Yun, Eunjeong;Kim, Jinho;Nam, Kilim;Song, Hyunju;Ok, Cheolyoung;Choi, Jun;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.575-585
    • /
    • 2018
  • In this study, the texts of science textbooks of the past 20 years were collected in order to systematically carry out researches on scientific languages and scientific terms that have not been noticed in science education. We have collected all the science textbooks from elementary school to high school in the 6th curriculum, the 7th curriculum, and the 2009 revised curriculum, and constructed a corpus comprising of 132 textbooks in total. Sequentially, a raw corpus, a morphological annotated corpus, and a semantic annotated corpus of science terms, were constructed. The final constructed science textbook corpus was named K-STeC (Korean Science Textbook Corpus). K-STeC is a semantic annotated corpus with semantic classification and classification of scientific terms, together with meta information of bibliographic information such as curriculum, subject, grade, and publisher, location information such as chapter, section, lesson, page, and sentence, and structure information such as main, inquiry activities, reference materials, and titles. Throughout the three-year study period, a new research method was created by integrating the know-how of the three fields of linguistic informatics, computer science and science education, and a large number of experts were put in to produce labor-intensive results. This paper introduces new research methodologies and outcomes by looking at the whole research process and methods, and discusses the possibility of future development of scientific language research and how to use the results.