• Title/Summary/Keyword: 2.75″ Rocket

Search Result 29, Processing Time 0.021 seconds

Measuring Technique of Burn-out Indices for 2.75″ Rocket Motor (2.75인치 로켓트 모터의 연소완료지표 계측기법)

  • Kang, Kyu-Chang;Choi, Ju-Ho;Yu, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.106-115
    • /
    • 2000
  • This paper presents the measuring technique of time and velocity when rocket motor is burnt out for 2.751" rocket. This technique use doppler effect, frequency spectrum analysis and curve fitting. In this study, we use muzzle velocity radar for doppler signal acquisition, short-time fourier transform for spectrum analysis and curve fitting for smoothing.

  • PDF

Development of the Korean 2.75 inch Rocket Propulsion System (한국형 2.75 인치 로켓 추진기관 개발)

  • Kang, Kiha;Lee, Yongbum;Yeom, Yongyeol;Bang, Gibok;Yang, Youngjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.70-77
    • /
    • 2014
  • In this paper, the development of unique model of the 2.75 inch rocket propulsion system is described. Recently developed korean 2.75 inch rocket propulsion system shows the improvement of a flame stability resulted from a change in the configuration of propellant grain, and of an incidental ignition protection function using the EMI(electromagnetic interference) filter on ignition system. Moreover it is shown that a directional flight stability is improved by increasing the number of fins and changing the nozzle configuration. Static firing test and thermal shock test were conducted for the validation before flight, and flight test of 210 rounds of rockets was conducted to verify the trajectory uniformity. In addition, intellectual property issues can be overcome with the unique korean 2.75 inch rocket motor as well as the performance improvement.

Performance Test of a 75-tonf Rocket Engine Turbopump (75톤급 액체로켓엔진용 터보펌프 실매질 성능시험)

  • Jeong, Eunhwan;Kwak, Hyun-Duck;Kim, Dae-Jin;Kim, Jin-Sun;Noh, Jun-Gu;Park, Min-Ju;Park, Pyun-Goo;Bae, Jun-Hwan;Shin, Ju-Hyun;Wang, Seong-Won;Yoon, Suck-Hwan;Lee, Hanggi;Jeon, Seong-Min;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Seong-Lyong;Kim, Seung-Han;Woo, Seong-Phil;Han, Yeong-Min;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • Performance tests of a 75-tonf liquid rocket engine turbopump were conducted. The performance of sub-components - two pumps and a turbine - and their power matching were measured and examined firstly near the design speed under the LN2 and kerosene environment. In the real propellant - LOX and kerosene - environment tests, design and off-design performance of turbopump were fully verified in regime of the rocket engine operation. During the off-design performance tests, turbopump running time was set longer than the engine operating time to verify the pump operability and set the pump inlet pressure close to design NPSHr to investigate pump suction capability in parallel. It has been found that developed-turbopump satisfied all of the engine required performances.

Investigation of Chill Down Characteristics of Liquid Oxygen Feeding System in 75 Tonf-class Liquid Rocket Engine Firing Test (75톤급 액체로켓엔진 연소시험에서의 액체산소 공급부 예냉특성 고찰)

  • Seo, Daeban;Cho, Namkyung;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-116
    • /
    • 2018
  • A firing test of the 75 tonf-class liquid rocket engine to be used as the first and second stage engines of the KSLV-II was carried out at the rocket engine test facility(RETF). Since this engine uses liquid oxygen as the oxidizer, which is a cryogenic fluid, it is essential that the chill down of the supply pipe line and engine proceed for the firing test; thus, the given inlet requirements must be met. Moreover, it is important to understand the chill down characteristics of the facility and the engine and the amount of liquid oxygen consumed in the chill down process for efficient test operation in the future. In this paper, chill down characteristics of the supply pipe and the engine were evaluated through the investigation of the chill down process of the 75 tonf-class liquid rocket engine at each stage before and after run tank pressurization. In addition, the amount of liquid oxygen consumed was also evaluated.

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

Analysis of Pressure Fluctuations in 1/2.5-scale Thrust Chamber for 75 tonf-class Engine (75톤급 엔진 1/2.5-scale 연소기 압력 섭동 분석)

  • Ahn, Kyu-Bok;Kang, Dong-Hyuk;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • In the paper, the dynamic characteristics obtained from hot-firing tests of 1/2.5-scale thrust chamber for 75 tonf-class liquid rocket engine were described. To investigate the dynamic characteristics by engine start transient period and chamber pressure variation, hot-firing tests were performed in the chamber pressures of 30 bar and 60 bar. According to these variations, combustion stability in the combustion chamber was examined.

  • PDF

Critical Speed Analysis of a 7 Ton Class Liquid Rocket Engine Turbopump (7톤급 액체로켓엔진 터보펌프 임계속도 해석)

  • Jeon, Seong-Min;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.11-15
    • /
    • 2012
  • A rotordynamic analysis is performed for a 7 ton class turbopump applied to the third stage LRE(Liquid Rocket Engine) of the KSLV(Korea Space Launch Vehicle). Based on the heritage of the developed experimental 30 ton class turbopump and developing 75 ton class turbopump for the KSLV first and second stage LRE, the 7 ton class turbopump is designed as an one-axis rotor turbopump. Two rotor systems comprised of one oxidizer pump assembly and the other fuel pump-turbine assembly are connected each other using a spline shaft and operating at a design speed. Through the rotordynamic analysis, it is investigated that the turbopump acquires sufficient separate margin of critical speed as a sub-critical rotor.

  • PDF

Experimental Study on the Static Stability of a Sounding Rocket Model in the Supersonic Wind Tunnel (과학로켓 모델의 정적 안정성에 대한 초음속풍동 실험연구)

  • Lee, Sang-Hyun;Cho, Hwan-Kee;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.856-861
    • /
    • 2010
  • In this work, experiments on hybrid sounding rocket were conducted to investigate the aerodynamic characteristics and analyze longitudinal static stability. Tests were performed on 1/10 scale models of sounding rocket through Mach number ranging from 1.75 to 2.5 and for angle of attack from $0^{\circ}$ to $6^{\circ}$. Aerodynamic forces and moments were measured by means of a 4 component internal balance. With measured forces and moments, static stability characteristics of rocket were calculated. Tests were made for three models with different length to determine the effect of body length. The visualization of shock waves was carried out by Schlieren optical system to observe variations of shock waves with Mach number and angle of attack.

Thermomechanical Analysis of a 75ton Thrust Turbopump Assembly (75톤급 터보펌프의 조립체 열응력 거동 해석)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.409-412
    • /
    • 2009
  • A 75ton thrust turbopump system for liquid rocket engine was analyzed thermally and mechanically. A 2D axisymmetric model of the turbopump assembly was created. In the analysis operation cycle including chill-down, operation and post operation steps were considered. Appropriate heat transfer conditions for each step were modeled and applied. Transient temperature distribution was calculated, consequent mechanical analysis was conducted to predict stress and deformation. Effects of external heat insulators and heat dissipation at the bearings were considered in the heat transfer analysis.

  • PDF

Rotordynamic design of a fuel pump and turbine for a 75 ton liquid rocket engine (75톤급 액체로켓 엔진용 연료펌프/터빈 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.201-208
    • /
    • 2007
  • A fuel pump and turbine rotordynamic design is performed for a 75 ton thrust liquid rocket engine. A distance from the rear bearing to the turbine was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds, turbine mass and bearing stiffness to investigate critical speed of the fuel pump and turbine. From the numerical analysis, it is found that the effect of the front bearing stiffness is negligible in the critical speed due to the large mass moment of inertia of the turbine. With the rear bearing stiffness over $2{\times}10^{8}N/m$ and the turbine mass below 20 kg, the critical speed of the fuel pump and turbine in long shaft case is at least 70 % higher than the operating speed 11,000 rpm.

  • PDF