• Title/Summary/Keyword: 2.4GHz ISM band

Search Result 122, Processing Time 0.026 seconds

Analysis Microstrip Patch Antenna of MIMO Structure (MIMO 구조의 마이크로스트립 패치 안테나 분석)

  • Kim, Sun-Woong;Park, Jung-Jin;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.944-949
    • /
    • 2015
  • This study proposed a patch antenna with a MIMO structure which is applicable for wireless communication equipment by combining a single patch antenna with a multi port. The proposed MIMO patch antenna was designed through the TRF-45 substrate with a relative permittivity of 4.5, loss tangent equal to 0.0035 and dielectric high of 1.6 mm, and the center frequency of the antenna was 2.45 GHz in the ISM (Industrial Scientific and Medical) band. The proposed MIMO patch antenna had a 500 MHz bandwidth from 2.16 ~ 2.66 GHz and 24.1% fractional bandwidth. The return loss and VSWR were -62.05 dB, 1.01 at the ISM bandwidth of 2.45 GHz. The Wibro band of 2.3 GHz was -17.43 dB, 1.33, the WiFi band of 2.4 GHz was -31.89 dB, 1.05, and the WiMax band of 2.5 GHz was -36.47 dB, 1.03. The radiation patterns included in the bandwidth were directional, and the WiBro band of 2.3 GHzhad a gain of 4.22 dBi, the WiFi band of 2.4 GHz had a gain of 4.12 dBi, the ISM band of 2.45 GHz had a gain of 4.06dBi, and the WiMax band of 2.5 GHz had a gain of 3.9 6dBi.

Design and Implementation of a Stacked Microstrip Antenna with Broad Bandwidth for ISM Band (ISM 대역에서의 적층 구조를 이용한 광대역 마이크로스트립 안테나 설계 및 제작)

  • Kim, Min-Joon;Lee, Jong-Woo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.437-441
    • /
    • 2003
  • The major drawback of the classical microstrip patch antennas Is their narrow band characteristic from 1% to 5%. In this paper, to improve this drawback, we designed the antenna with stacked structure having one drive patch connected with feed line and four identical radiation patches. Resonance is achieved by adjust ing coupling area between one drive patch and four identical radiation patches and changing the size of drive patch or radial ion patches. Used substrate is FR4(${\epsilon}_r$=4.6 and t=1.6mm) and designed center frequency is 2.45GHz. The designed antenna has a wide bandwidth of 380Mhz form 2.333GHz to 2.713GHz(about 15.5%) including ISM band from 2.4GHz to 2.4835GHz.

  • PDF

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

A Novel Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics by a Linear Monopole Antenna Combined with a Crossed Planar Monopole Antenna (선형 모노폴 안테나와 십자형 모노폴 안테나의 결합에 의한 ISM 2.45GHz/5.8GHz 이중대역 특성을 가지는 안테나 설계)

  • Shim, Jae-Ruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.515-519
    • /
    • 2015
  • In this paper, we suggested the novel monopole antenna for dual band characteristics by a linear monopole antenna combined with crossed planar monopole antenna. The target frequency is ISM(Industrial Scientific Medical) 2.45GHz/5.8GHz. The distinctive features of the proposed antenna in this paper is based on the slit in the surface of a crossed planar monopole for the dual band characteristics and the omnidirectional radiation patterns. The compact size of the proposed antenna is $36mm{\times}5.4mm{\times}5.4mm$. According to the simulation results, the bandwidth, the reflection coefficients below -10dB, of 2.45GHz and 5.8GHz are 150MHz and 1.43GHz, respectively. Consequently the proposed antenna structures is apply to the antenna for dual band characteristics.

Design and Implementation of Bluetooth Module using 2.4 GHz ISM band (2.4 GHz ISM band용 bluetooth 모듈의 설계기술 연구)

  • 원광호;김재호;송병철;조위덕;손병일
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.45-48
    • /
    • 2000
  • In this paper, we designed bluetooth module using 2.4 GHz ISM band. Bluetooth is wireless networking solution that connects PDA, cellular phone, printer, PC, etc each other. We integrated digital and RF part in one module. As a result, we can make low power consumption module that enables long battery life. In addition, we enlarged maximum available range of our module from 10m to l00m. This module satisfies bluetooth specification 1.0.

  • PDF

Design of Strip Line Fed Slot Antenna for 5GHz(WLAN, ISM Band) Application (스트립라인 급전을 이용한 5GHz(WLAN, ISM Band)대역용 슬롯 안테나 설계)

  • 전찬익;이범선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.100-103
    • /
    • 2002
  • 본 논문에서는 무선 인터넷 사업 및 초고속 정보통신 인프라 구축과 관련하여 WRC-2003에서 새롭게 분배하기로 결정된 5GHz대역(5.135~5.35GHz, 5.47~5.725GHz)과 기존의 ISM 대역(5.75~5.85GHz)에 동시에 사용할 수 있는 스트립 라인 급전을 이용한 슬롯 안테나를 설계하였다. 무선통신 시스템의 박형화를 위하여 평면 내장형으로 설계하였으며 안테나의 크기는 5.04$\times$12.55$\times$2.0[mm]이며 FR-4($\varepsilon$$_{r}$=4.6)를 substrate로 사용하였다. 중심주파수 5.749GHz를 중심으로 10㏈ 기준대역폭 28.54%(4.929~6.561GHz)fmf 갖는다. 안테나의 이들은 약 4.2㏈i이다.

  • PDF

Design of Modified H-slot Aperture-coupled Circular Polarization Microstrip Array Antenna (변형된 H형 슬롯 개구결합 원형편파 마이크로스트립 배열안테나 설계)

  • Park, Ki-dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1363-1368
    • /
    • 2015
  • Aperture-coupled circular polarization microstrip array antenna is proposed in this paper. The proposed antenna is useful for 2.4GHz ISM band and its aperture shape is a modified H-slot. The optimal design parameters for the antenna structure is found by using electromagnetic analysis tool HFSS repeatedly. The HFSS simulation results, such as return loss, axial ratio, radiation pattern and gain of the proposed array antenna are compared with results of the single antenna. It is able to verify that the proposed array antenna is valuable enough to be used in various applications as well as 2.4GHz ISM band.

The Design of a compact slot antenna for 2.4GHz ISM band applications (2.4GHz ISM 밴드용 소형 슬롯 안테나의 설계)

  • Kim, Ui-Jung;Kim, Byoung-Sam;Jang, Bong-Ki;Jin, Jeong-Hi;Kim, Young;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • In this paper, a compact slot antenna for 2.4GHz ISM band applications has been designed. The folded slot with some additional meander sections are used in the design of the antenna within the restricted PCB space. The operating frequency band and the fractional bandwidth of the antenna is about 2.32~2.58 GHz and 11%, and the radiation patterns within the operation bandwidth are almost same. Also, the radiation efficiency and gain of the antenna is more than 49% and 1.2 dBi respectively. To check the validity of the design result, the measurement and simulation results are compared and presented.

  • PDF

Channel Selection Method of Wireless Sensor Network Nodes for avoiding Interference in 2.4Ghz ISM(Industrial, Scientific, Medical) Band (2.4Ghz ISM(Industrial Scientific Medical) 밴드에서 간섭을 회피하기 위한 무선 센서 노드의 채널 선택 방법)

  • Kim, Su Min;Kuem, Dong Hyun;Kim, Kyung Hoon;Oh, Il;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.109-116
    • /
    • 2014
  • In recent, ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart phone, notebook computer, printer and portable multimedia devices. Accordingly, studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi device using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band causes serious network performance deterioration of wireless sensor networks. This paper examined a method of identifying channel status to avoid interference among wireless communication devices using IEEE 802.11b (Wi-Fi) and other ISM bands during communication among IEEE 802.15.4 based wireless sensor network nodes in ISM band. To identify channels occupied by Wi-Fi traffic, various studies are being conducted that use the RSSI (Received Signal Strength Indicator) value of interference signal obtained through ED (Energy Detection) feature that is one of IEEE 802.15.4 transmitter characteristics. This paper examines an algorithm that identifies the possibility of using more accurate channel by mixing utilization of interference signal and RSSI mean value of interference signal by wireless sensor network nodes. In addition, it verifies such algorithm by using OPNET Network verification simulator.

2.4/5GHz Dual-Band RF Design and Implementation and Performance Evaluation (2.4/5GHz 이중대역 RF 설계 및 구현과 성능 평가)

  • Byung-Ik Jung;Gyeong-Hyu Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.755-760
    • /
    • 2023
  • In this paper, the 2.4/5GHz dual band was used to ensure the reliability and stability of the wireless AV surveillance system using the existing 2.4GHz band. The proposed system supports dynamic channel allocation and channel change technology to avoid interference from other signals (Wifi, Bluetooth, etc.), reduces maintenance costs incurred when building wireless CCTV, and can be linked with existing wired CCTV. The service area of the A/V surveillance system used can be expanded.