• Title/Summary/Keyword: 2.4GHz Band Applications

Search Result 177, Processing Time 0.023 seconds

A 94-GHz Phased Array Antenna Using a Log-Periodic Antenna on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A 94-GHz phased array antenna using a log-periodic antenna has been developed on a GaAs substrate. The developed phased array antenna comprises four log-periodic antennas, a phase shifter, and a Wilkinson power divider. This antenna was fabricated using the standard microwave monolithic integrated circuit (MMIC) process including an air bridge for unipolar circuit implementations on the same GaAs substrate. The total chip size of the fabricated phased array antenna is 4.8 mm × 4.5 mm. Measurement results showed that the fabricated phased array antenna had a very wide band performance from 80 GHz to 110 GHz with return loss characteristics better than -10 dB. In the center frequency of 94 GHz, the fabricated phased array antenna showed a return loss of -16 dB and a gain of 4.43 dBi. The developed antenna is expected to be widely applied in many applications at W-band frequency.

Compact Circularly Polarized Antenna with a Capacitive Feed for GPS/GLONASS Applications

  • Jeong, Seong Jae;Hwang, Keum Cheol;Hwang, Do-In
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.767-770
    • /
    • 2012
  • This letter presents a novel compact circularly polarized patch antenna for Global Positioning System/Global Navigation Satellite System (GPS/GLONASS) applications. The proposed antenna is composed of a simple square radiating patch fed by a capacitive dual-feeder to increase the impedance bandwidth and a lumped element hybrid coupler to achieve the broadband characteristic of the axial ratio (AR). The realized antenna dimensions are $28mm{\times}28mm{\times}4mm$, which is the most compact size among the dual-band GPS/GLONASS antennas reported to date. The measured results demonstrate that the proposed antenna has a gain of 2.5 dBi to 4.2 dBi and an AR of 0.41 dB to 1.51 dB over the GPS/GLONASS L1 band (1.575 GHz to 1.61 GHz).

Low Spurious Image Rejection Mixer for K-band Applications

  • Lee, Moon-Que;Ryu, Keun-Kwan;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.272-275
    • /
    • 2004
  • A balanced single side-band (SSB) mixer employing a sub-harmonic configuration is designed for up and down conversions in K-band. The designed mixer uses anti-parallel diode (APD) pairs to effectively eliminate even harmonics of the local oscillator (LO) spurious signal. To reduce the odd harmonics of LO at the RF port, we employ a balanced configuration for LO. The fabricated chip shows 12$\pm$2dB of conversion loss and image-rejection ratio of about 20dB for down conversion at RF frequencies of 24-27.5GHz. As an up-conversion mode, the designed chip shows 12dB of conversion loss and image-rejection ratio of 20 ~ 25 dB at RF frequencies of 25 to 27GHz. The odd harmonics of the LO are measured below -37dBc.

2.6 GHz-Band MIMO Omni Antenna Having Folded Configuration (폴디드 구조를 갖는 2.6 GHz 대역 MIMO 무지향 안테나)

  • Lee, Su-Won;Lee, Jae-Du;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2015
  • In this paper, we propose 2.6 GHz single band dual polarization MIMO omni antenna for in-building applications. The proposed antenna operates at 2.6 GHz single LTE band, Up-link 2.52~2.54 GHz and Down-link 2.64~2.66 GHz. Horizontal and vertical polarizations of the antenna has been, respectively, constructed by the synthesis of four folded loop antennas and the folded monopole antenna. The height of the MIMO omni-directional antenna is minimized to be less than ${\lambda}/13.5$ from the ground. The measurement results show excellent MIMO omni antenna performance of 2.85 dBi vertical polarization gain, 2.29 dBi horizontal polarization gain, and 19.25 dB port isolation.

Design of a RF Front-End for 2.45GHz Band using Sub-harmonic Active Mixer (Sub-harmonic 능동형 혼합기를 이용한 2.45GHz 직접변환 수신기용 RF Front-End 설계 방법에 관한 연구)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Jung, Hyo-Bin;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1235-1240
    • /
    • 2008
  • In this paper, we presented an active RFID system in 2.45GHz range including LNA, Mixer and gain block. And in this work, a link budget model for RFID applications are proposed. We describe the detailed design and implementation of our system. Our components in RFID system has features such as low Noise Figure, reliable energy budget, and standard compliance with ISO 18000-4. Our receiver is effective for development and evaluation of prototype applications because of the flexibility of the design hardware. So, our platform will be suitable for versatile item management applications.

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

Open Ended Folded-Slot Antenna with a Wide n-Shaped Slot for Ultra-Wideband Applications

  • Yoo, Jin-Ha;Lee, Young-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.83-89
    • /
    • 2020
  • A microstrip feedline based open ended folded-slot antenna is proposed for ultra-wideband (UWB) applications. The prototype of the proposed antenna is fabricated on the FR4 dielectric substrate. The proposed antenna has a wide n-shaped slot that is useful for designing circuit components on the same printed circuit board (PCB) as that of the radio frequency (RF) modules. The proposed antenna use two kinds of slots as radiators, and each slots have different characteristics because of the different type of ends of the slot. The wideband characteristic can be obtained by resonances of each slot which are occurred at different frequencies. The measured impedance bandwidth (S11≤ -10 dB) is 2.9-11.56 GHz, and the antenna peak gain is 2-4 dBi over the UWB range. The antenna has a stable omni-directional radiation pattern and only a small group-delay variation across the UWB passband. In addition, we present a modified design with band-notched characteristics of a 5 GHz wireless local area network (WLAN) frequency band.

A Design and Manufacture of Triple Band Antenna with Line and Arc shaped Strips for WLAN/WiMAX system (직선과 원호가 결합된 WLAN/WiMAX용 삼중대역 안테나 설계 및 제작)

  • Kwon, Man-Jea;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • In this paper, a microstrip-fed triple-band monopole antenna for WLAN/WiMAX applications was proposed. The proposed antenna is consist of two arc-shaped and one strip line structure, then get the three current path and then designed in order to get triple resonant characteristics. We carried out simulation about parameters. Taking account of coupling effect, Adjusted the length of the two arc-shaped and one strip line, we get the optimized parameters. The proposed antenna is fabricated on an FR-4 substrate, the dielectric constant is 4.4, and total size is $23.5mm(W1){\times}32.0mm(L1){\times}1.0mm(t)$, and its proposed antenna size is $21.0mm(W6){\times}31.0mm(L7)$. From the measured results, return loss of the proposed antenna satisfied return loss 927 MHz (1.844~2.771 GHz), 926 MHz (3.33~4.256 GHz), and 1,415 MHz (5.13~6.545 GHz). And measured results of gain and radiation patterns displayed for operating bands.

A Design of Dual-band Microstrip Antenna Loading Inverted-L-shaped Parasitic Elements Vertically at Radiation Apertures for GPS Applications (방사개구면에 역 L형 기생소자를 세운 GPS용 이중대역 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.38-43
    • /
    • 2015
  • In this paper, we present novel dual-band microstrip antennas using inverted-L-shaped parasitic elements vertically at radiation apertures for GPS L1(1.575 GHz) and L2(1.227 GHz) bands. For making dual band which has large interval, the inverted-L-shaped parasitic element was loaded at the radiation aperture of a half-wavelength patch antenna(GPS L1) in opposite direction of the feeding point for receiving the low frequency(GPS L2). The low frequency occurs by perturbation and coupling between the patch and parasitic. Next, due to use circular polarizations at the GPS applications, two inverted-L-shaped parasitic elements were loaded at radiation apertures of each polarizations and the feeding point was moved at diagonal part of the patch. The dimensions of the designed circularly polarized antenna were $88.5{\times}79{\times}10.4mm^3$ ($0.36{\lambda}L{\times}0.32{\lambda}L{\times}0.04{\lambda}L$, ${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths were 116.3 MHz(7.4%) and 64.3 MHz(5.2%) at GPS L1 and L2 bands, respectively. All of these cover the respective required system bandwidths. The measured 3 dB axial ratio bandwidths were 11.7 MHz(0.74%) and 14 MHz(1.14%), respectively. Within each of the designed bands, broadside radiation patterns were observed.