• Title/Summary/Keyword: 2.4GHz Active RFID

Search Result 21, Processing Time 0.039 seconds

A Channel Allocation Protocol for Collision Avoidance between Reader in 2.4GHz Multiple Channel Active RFID System (2.4GHz 다중채널 능동형RFID시스템에서 리더간 충돌회피를 위한 채널 할당 프로토콜)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.139-142
    • /
    • 2009
  • RFID(Radio Frequency IDentification) technology is an automatic identification method using radio frequencies between RFID reader which collects the information and tag which transmits the information. RFID technology develops passive RFID which transmit the only ID to active RFID which transmit the additional information such as sensing information. However, ISO/IEC 18000-7 as active RFID standard has a problem which cannot use multiple channel. To solve this problem, we use the 2.4GHz bandwidth technology and we propose the dynamic channel allocation method which can efficiently allot a channel. we show the operation of the dynamic channel allocation method through design and implement with CC2500DK of Taxas Instrument.

  • PDF

A Design and Implementation of 2.4GHz Active RFID Reader Protocol using Channel Switching (채널 스위칭을 이용한 2.4GHz 능동형 RFID 리더 프로토콜 설계 및 구현)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.95-98
    • /
    • 2009
  • RFID(Radio Frequency IDentification) technology is an automatic identification method using radio frequencies between RFID reader which collects the informatin and tag which transmits the information. RFID technology develops passive RFID which transmit the only ID to active RFID which transmit the additional information such as sensing information. there is ISO/IEC 18000-7 as typical standard of active RFID. it is single channel system of 433.92MHz and has limitation of collection of a number of tags. to overcome limitation of collection of many tags, we propose the new 2.4GHz active RFID technology which can use the multi-channel. if reader has multi-interface and uses another channel in each, reader could fast collect the tags. but, if a reader which has many interfaces collects tags through the specific interface, the performance may not improve any more comparing with a reader using single interface. in this paper, we show the fast collection through design and implementation of protocol for load balancing between interfaces in multi-interface RFID reader.

  • PDF

A Study on 2.45GHz RFID Active Tag and Reader Using Various Radio Frequency (다양한 전파 세기를 이용한 2.45GHz RFID Active Tag 및 Reader에 관한 연구)

  • You, Chi Hyung;Kim, Jung Jae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.31-39
    • /
    • 2008
  • RFID diffusion and origin technique being developed gradually, according to the various branch application solutions are coming out plentifully. Developed distance variable style 2.45 Ghz Active Tag from the present paper and according to century of corresponding frequency the distance of the leader and the tag between should have been falling as will freeze, will be able to grasp in order. The experimental result plan develops the data which measures from field test and the electromagnetic waves laboratory with base.

A Study about Implementation Method of Multi-Interface Multi-Channel 2.4GHz Active RFID Reader Protocol (다중인터페이스 다중채널 2.4GHz 능동형 RFID 리더 프로토콜 구현방법에 관한 연구)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-Doek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.1005-1014
    • /
    • 2010
  • When reader collect tags, we found that they tend to get together to specific interface in Multi-Interface Multi-Channel 2.4GHz Active RFID system. To solve this problem, we designed the LP-Combind and AP-Balanced protocol for load distribution between interfaces, then verified its superiority of the performance through the simulation. There are three problems to implement designed protocols in hardware of firmware-level. first, tag selects randomly the channel of reader and reader need the method which can change the channel of tags. second, reader has the synchronization problem between reader and tag. third, reader has problem that MCU of reader have to operate simultaneously dual interface. To slove this problems, we designed the message and implemented method for tag channel change and the protocol in order to adjust synchronization between reader and tag, Therefore, we compared and analyzed the performance of protocols by experiment. If LP windows size is same, the performance of LP-Combined protocol and AP-Balanced protocol which lower collision probability by its load distribution is more outstanding than single interface protocol performance.

Design of a LNA-Mixer for 2.45GHz RFID Reader (2.45GHz 대역 RFID Reader 를 위한 LNA -Mixer 설계)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.415-418
    • /
    • 2007
  • This paper presents the design and analysis of LNA-Mixer for 2.45GHz RFID reader. The LNA is implemented by PCSNIM method for low power consumption. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique, and the resonating technique for the tail capacitance. The connection between the two designed circuits is made by active balun. This LNA-Mixer has about 35dB for -40dBm input RF power, LO power is 0dBm and RF frequency is 2.45 GHz and IIP3 is -4dBm. The layout of LNA-Mixer for one-chip design in a $0.18-{\mu}m$ TSMC process has 2.6mm ${\times}$ 1.3mm size.

  • PDF

The Etrance Authentication Systems Using Real-Time Object Extraction and the RFID Tag (얼굴 인식과 RFID를 이용한 실시간 객체 추적 및 인증 시스템)

  • Jung, Young Hoon;Lee, Chang Soo;Lee, Kwang Hyung;Jun, Moon Seog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.51-62
    • /
    • 2008
  • In this paper, the proposal system can achieve the more safety of RFID System with the 2-step authentication procedures for the enhancement about the security of general RFID systems. After authentication RFID Tag, additionally, the proposal system extract the characteristic information in the user image for acquisition of the additional authentication information of the user with the camera. In this paper, the system which was proposed more enforce the security of the automatic entrance and exit authentication system with the cognitive characters of RFID Tag and the extracted characteristic information of the user image through the camera. The RFID system which use the active tag and reader with 2.4GHz bandwidth can recognize the tag of RFID in the various output manner. Additionally, when the RFID system have errors, the characteristic information of the user image is designed to replace the RFID system as it compare with the similarity of the color, outline and input image information which was recorded to the database previously. In the result of experiment, the system can acquire more exact results as compared with the single authentication system when it using RFID Tag and the information of color characteristics.

Design and Implementation of Large Tag Data Transmission Protocol for 2.4GHz Multi-Channel Active RFID System (2.4GHz 다중채널 능동형 RFID시스템을 위한 대용량 태그 데이터 전송 프로토콜의 설계 및 구현)

  • Lee, Chae-Suk;Kim, Dong-Hyun;Kim, Jong-Doek
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.217-227
    • /
    • 2010
  • To apply active RFID technology in the various kinds of industry, it needs to quickly transmit a large amount of data. ISO/IEC 18000-7 standard uses the 433.92MHz as single channel system and its transmit rate is just 27.8kbps, that is insufficient for a large amount of data transmission. To solve this problem, we designed a new data transmission protocol using 2.4GHz band. The feature of designed protocol is not only making over 255bytes data messages using the Burst Read UDB but also efficiently transmitting it. To implement this protocol, we use Texas Instruments's SmartRF04 develop kit and CC2500 transceiver as RF module. As an evaluation of 63.75kbytes data transmission, we demonstrate that transmission time of Burst Read UDB has improved as 17.95% faster than that of Read UDB in the ISO/IEC 18000-7.

Design of a RF Front-End for 2.45GHz Band using Sub-harmonic Active Mixer (Sub-harmonic 능동형 혼합기를 이용한 2.45GHz 직접변환 수신기용 RF Front-End 설계 방법에 관한 연구)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Jung, Hyo-Bin;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1235-1240
    • /
    • 2008
  • In this paper, we presented an active RFID system in 2.45GHz range including LNA, Mixer and gain block. And in this work, a link budget model for RFID applications are proposed. We describe the detailed design and implementation of our system. Our components in RFID system has features such as low Noise Figure, reliable energy budget, and standard compliance with ISO 18000-4. Our receiver is effective for development and evaluation of prototype applications because of the flexibility of the design hardware. So, our platform will be suitable for versatile item management applications.

Dual-band RFID Tag Antenna Applicable for RF Power Harvester System (RF 에너지 충전 시스템 기능을 위한 이중대역 RFID 태그 안테나)

  • Mun, Byeonggwi;Rhee, Changyong;Kim, Jae-Sik;Cha, Junghoon;Lee, Byungje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.46-51
    • /
    • 2013
  • In this paper, a dual-band antenna is proposed for the RF power harvester system as well as RFID tag. The proposed antenna operates as the passive and active RFID tag antenna in the UHF and microwave band, respectively. In addition, to charge the battery of an active RFID tag in the microwave band, it harvest the RF signal for tagging from the passive RFID tag antenna in the UHF band. The proposed antenna operates in the UHF band (917~923.5 MHz) and microwave band (2.4~2.45 GHz). In order to obtain the dual-band operation, the dipole structure and meander parasitic elements are proposed as the ${\lambda}/2$ and $1{\lambda}$ dipole antenna, respectively. The radiating dipole structure in the microwave band acts as the coupled feed for the meander parasitic elements in the UHF band. The impedance bandwidth (VSWR < 2) of the proposed antenna covers 917~923.5 MHz (UHF band) and 2.4~2.45 GHz (Microwave band). Measured total efficiencies are over 45 % in the UHF band and over 70 % in the microwave band. Peak gains are over 0.18 dBi and 2.8 dBi in the UHF and microwave band with an omni-directional radiation pattern, respectively.

Multi-Channel Multi-Interface Active RFID Reader and Protocol (다중 채널 다중 인터페이스 능동형 RFID 리더 및 프로토콜)

  • Park, Hyun-Sung;Kim, Dong-Hyun;Chung, Sang-Hwa;Baek, Yun-Ju;Kim, Jong-Doek
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.118-129
    • /
    • 2009
  • The ISO 18000-7 Active RFID standard, a single channel system operating in the 433Mhz, faces technical difficulties in supporting some recently introduced application demands because of its low transmission rates and radio interference between readers. We propose a new multi-channel active RFID system operating in the 2.4Ghz. The special feature of the proposed system is that a reader makes use of multiple interfaces to improve its performance like a multi-core processor. However if only a small part of interfaces are actually used, the performance improvement would not meet the expectation. To overcome this problem, a new multi-channel multi-interface active RFID protocol, which balances communication loads among all available interfaces, is necessary. 3 protocols, named as "Aggregated", "LP-Combined", "AP-Balanced", are proposed. Through simulation, we compare them for various conditions by changing number of tags, number of interfaces, tag data size. AP-Balanced shows the best performance and its performance increases almost linearly as the number of interface increases, which meets our expectation.