• Title/Summary/Keyword: 2.45GHz microwave plasma

Search Result 19, Processing Time 0.025 seconds

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

A study on the generating plasma by microwave (마이크로파를 이용한 플라즈마 발생에 관한 연구)

  • Whang, Ki-Woong;Lee, Jeong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.300-303
    • /
    • 1987
  • A microwave plasma generating system has been designed to study the properties of plasma. A microwave(2.45GHz) generated by the magnetron is transmitted to the cylindrical cavity through the the rectangular wave guide to generate hydrogen plasma. The electron temperature and the plasma density are measured by the Double Langmuir probe. A dilectric such as alumina is heated by the microwave add plasma. The surface temperature varies with the neutral gas pressure.

  • PDF

Characterization of Linear Microwave Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 선형 마이크로웨이브 플라즈마의 특성 분석)

  • Seo, Kwon-Sang;Han, Moon-Ki;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.567-572
    • /
    • 2015
  • Discharge characteristics of linear microwave plasma were investigated by using fluid simulation of 2D axis-symmetry based on finite elements method. The microwave power was 2.45 GHz TEM mode and transmitted through linear antenna. Resistive power and pressure were considered simulation variables and argon was used for working gas. A decrease of electron density along the quartz tube was observed in low power condition but relatively uniform plasmas were generated in chamber by increasing the resistive power. The electron temperature was highly detected near the surface of quartz tube because the electron was heated only dielectric surface. The power transmission efficiency decreased and characteristics of surface plasma were observed in high electron density condition.

Chemical Vapor Deposition of Diamond Film from Methane-Hydrogen Gas in Microwave Plasma (마이크로웨이브 플라즈마에서 메탄-수소가스로부터 다이아몬드박막의 화학증착)

  • 이길용;제정호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.331-340
    • /
    • 1989
  • In this study, it was tried to deposit diamond films from a mixture of CH4 and H2 by the microwave plasma chemical vapor deposition(MWCVD). The MWCVD process was designed and set up from the 2.45GHz microwave generator. And the diamond film was successfully deposited on silicon wafers from the mixture of methane and hydrogen. The microstructures of the deposited diamond films were studied by using the following deposition variables : (a) methane concentration(0.6-10%), (b) reaction pressure(10-100torr), and (c) the substrate temperature(450-76$0^{\circ}C$).

  • PDF

Development of simple and continuous microwave source using a microwave oven (전자오븐을 이용한 간편하고 연속적인 마이크로파 발생 장치 개발)

  • 권기청;김재현;김정희;이효석;전상진;허승회;최원호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.290-295
    • /
    • 2000
  • In order to utilize as a pre-ionization means for reproducible ohmic plasma on KAIST-TOKAMAK, a simple, safe, economical and continuous microwave source has been developed using a home kitchen micro-wave oven. The magnetron used in the study can provide 500 W of power at 2.45 GHz. A conventional magnetron in a home kitchen microwave oven generates microwave for 8 ms at every 16 ms periodically due to the periodic (60 Hz) high voltage applied to the magnetron cathode. In order to generate continuous microwave which is suitable for tokamak pre-ionization, the magnetron operation circuit has been modified using a DC high voltage (5 kV, 1 A) power supply. It provides high-voltage with small ripple for magnetron cathode bias. Using the developed magnetron system, electron cyclotron resonace heated (ECH) plasmas were produced and the characteristics of the system were studied by diagnosing the ECH plasma using Langmuir probe and $H_{\alpha}$ emission diagnostics.

  • PDF

Electrodelss Plasma Torch Powered by Microwave and Its Applications (무전극 마이크로웨이브 플라즈마 토치와 응용)

  • Hong, Yong-Cheol;Jun, Hyung-Won;Lho, Tai-Hyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.889-892
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Lastly, we briefly report an underway research, which is remediation of soils contaminated with oils, volatile organic compounds, heavy metals, etc.

  • PDF

Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation

  • Hong, Yong-Cheol;Lho, Taihyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.139-144
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Finally, we briefly report treatment of soils contaminated with oils, volatile organic compounds, heavy metals, etc., which is an underway research in our group.

A Study on the Microwave Electric-Field Focusing Waveguide Systems for Driving Plasma Visible Light (플라즈마 가시광 구동을 위한 초고주파 전계 집속형 도파관 시스템에 관한 연구)

  • Jeon, Hoo-Dong;Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.303-312
    • /
    • 2009
  • In this study, a waveguide system for focusing the electric field is presented to emit the microwave-driven plasma visible light. This system consists of a magnetron for the microwave power supply, the waveguide section for power propagation, and the mesh-type cavity reactor. The quartz bulb containing a dose of sulfur powder and buffer gas Ar is located in the reactor, and forced by the strongly concentrated electric field for generating and exciting the sulfur plasma. That is, the conductor tips are loaded on each inner wall of the waveguide and the reactor, and then the plasma bulb is positioned between the tips, hence focusing the strong electric field on the bulb. Furthermore the waveguide section is designed for minimizing the degradations of matching characteristics according to the variations of the electrical conductivities of plasma at the transitory phase for plasma generation, hence providing the stable operation. Finally, the 2.45 GHz aluminum waveguide system is constructed, and then experiments for emitting the visible light are performed by using 400 W-class magnetron, showing the validity of designed system.

Fabrication of Microwave PECVD with Linear Antenna for large-scale deposition processing, and Analysis of Ar plasma characteristics using Electrostatic Probe and Temperature Characteristics (대면적 증착용 선형 초고주파 플라즈마 장치 제작 및 정전 탐침법을 이용한 Ar 플라즈마 특성 분석과 온도 특성 분석)

  • Han, Moon-Ki;Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.422-428
    • /
    • 2015
  • A 2.45GHz microwave plasma source with a linear antenna has been developed for low temperature large scale deposition processing. Microwave power is transmitted through WR340 waveguide and a copper rod, linear antenna, is located in a quartz tube. The power matching is effectively achieved by a linear antenna is located at ${\lambda}_g/4$ or $3{\lambda}_g/4$ from the end of WR340 waveguide. The Ar plasma was generated along the surface of quartz tube and a clear standing wave pattern with nearly 10cm wavelength was observed at Ar pressure of 200mTorr and 200W input power. The electron density and electron temperature were investigated by using the electrostatic probe. The electron density and electron temperature were highly measured near the surface of quartz tube. Ar plasma density along the quartz tube is mostly uniform despite standing wave set-up and antenna of long length. A uniform temperature was measured at 10~40cm distance from the end quartz tube and 5cm distance from the surface of quartz tube.

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF