• Title/Summary/Keyword: 2.2.15 cells

Search Result 3,351, Processing Time 0.039 seconds

NAD(P)H-quinone oxidoreductase-1 silencing modulates cytoprotection related protein expression in cisplatin cytotoxicity

  • Park, Se Ra;Jung, Ju Young;Kim, Young-Jung;Jung, Da Young;Lee, Mee Young;Ryu, Si Yun
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • NAD(P)H-quinone oxidoreductase-1 (NQO1) is a down-stream target gene of nuclear factor erythroid 2-related factor 2 (Nrf2), and performs diverse biological functions. Recently, NQO1 is recognized as an effective gene for the cytotoxic inserts with its diverse biological functions, which is focused on antioxidant properties. The aim of present study was to assess the impact of NQO1 knockdown on cytoprotection-related protein expression in cisplatin cytotoxicity by using small interfering (si) RNA targeted on NQO1 gene. Cytotoxicity of cisplatin on ACHN cells was assessed in a dose- and time-dependent manner after siScramble or siNQO1 treatment. After cisplatin treatment, cells were subjected to cell viability assay, western-blot analysis, and immunofluorescence study. The cell viability was decreased in the siNQO1 cells (50%) than the siScramble cells (70%) after 24 h of cisplatin ($20{\mu}M$) treatment. Moreover, cytoprotection-related protein expressions were markedly suppressed in the siNQO1 cells after cisplatin treatment. The expression of Nrf2 and Klotho were decreased by 20% and 40%, respectively, of that in siScramble cells. Nrf2 and Klotho activation were also decreased in cisplatin treated siNQO1 cells, confirmed by cytoplasm-tonuclear translocation. Our findings demonstrate that the increased cisplatin-induced cytotoxicity was accompanied by suppressed Nrf2 activation and Klotho expression in siNQO1 cells.

Synthesis and In Vitro Cytotoxicity of Cinnamaldehydes to Hyman Solid Tumor Cells

  • Kwon, Byoung-Mog;Lee, Seung-Ho;Choi, Sang-Un;Park, Sung-Hee;Lee, Chong-Ock;Cho, Young-Kwon;Sung, Nack-Do;Bok, Song-Hae
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 1998
  • Cinnamaldehydes and related compounds were synthesized from various cinnamic acids based on the $2^{I}$-hydroxycinnamaidehyde isolated from the bark of Cinnamomum cassia Blume. The cytotoxicity to human solid tumor cells such as A549, SK-OV-3, SK-MEL-2, XF498 and HCT15 were measured. Cinnamic acid, cinnamates and cinnamyl alcohols did not show any cytotoxicity against the human tumor cells. Cinnamaldehydes and realted compounds were resistant to A549 cell line up to 15 .mu.g/ml. In contrast, HCT15 and SK-MEL-2 cells were much sensitive to these cinnamaidehyde analogues which showed $ED{50} values 0.63-8.1{\mu}g/ml.$Cytotoxicity of the saturated aldehydes was much weak compared to their unsaturated aldehydes. From these studies, it was found that the key functional group of the cinnamaldehyde-related compounds in the antitumor activity is the propenal group.p.

  • PDF

Development of Useful Products Through Plant Cell Fusion and Culture of Populus spp.(II) (식물세포 배양 및 융합을 통한 유용물질 개발(II))

  • Kim, K.U.;Park, Y.G.;Choi, M.S.
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.160-165
    • /
    • 1995
  • Anthocyanin formation in callus cultures using Populus alba ${\times}$ Populus glandulosa was evaluated on basal MS medium supplemented with various levels of growth regulators, sucrose and nitrate concentrations. The highest yield of anthocyanin from cultured cells was produced under 5% sucrose, 1/8 strength of nitrate(12.5% of basic concentration) and combination of 1.0 mg/l IAA with 2 mg/l BAP, respectively. The high anthocyanin producing cell line no. 11 was selected among 15 cell lines, showing over 80% cells contained anthocyanin producing cells. From these cells, the highly productive red protoplast was isolated and the highest protoplast yield, $6.7{\times}10^6$ was obtained in enzyme combination IV which is composed of 2.0% cellulase, 0.5% macerozyme and 0.1% pectolyase.

  • PDF

Targeting of COX-2 Expression by Recombinant Adenovirus shRNA Attenuates the Malignant Biological Behavior of Breast Cancer Cells

  • Tu, Bo;Ma, Ting-Ting;Peng, Xiao-Qiong;Wang, Qin;Yang, Hong;Huang, Xiao-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8829-8836
    • /
    • 2014
  • Background: Cyclooxygenase-2 (COX-2), considered to have tumor-promoting potential, is highly expressed in a variety of tumors, including breast cancer. Since the functions and action mechanisms of COX-2 in breast cancer have not been fully elucidated, in the present study, the effects of target inhibiting COX-2 with recombinant adenovirus Ad-COX-2-shRNA on malignant biological behavior were investigated in representative cell lines. Materials and Methods: Breast cancer MDA-MB-231 and MCF-7 cells were transfected with Ad-COX-2-shRNA and COX-2 expression was tested by RT-PCR and Western blotting. Changes in proliferation, apoptosis and invasion of breast cancer cells were detected with various assays including MTT, colony forming, flowcytometry and Transwell invasion tests. The expression of related proteins involved in the cell cycle, apoptosis, invasion and signaling pathways was assessed by Western blotting. Results: COX-2 expression was significantly reduced in both breast cancer cell lines infected with Ad-COX-2-shRNA, with obvious inhibition of proliferation, colony forming rate, G2/M phase passage and invasion, as well as induction of apoptosis, in MDA-MB-231 and MCF-7 cells, respectively. At the same time, proteins related to the cell cycle, anti-apoptosis and invasion were significantly downregulated. In addition, c-myc expression and phosphorylation activation of Wnt/${\beta}$-catenin and p38MAPK pathways were reduced by the Ad-COX-2-shRNA. Conclusions: COX-2 expression is associated with proliferation, apoptosis and invasion of breast cancer cells, and its mechanisms of action involve regulating expression of c-myc through the p38MAPK and Wnt/${\beta}$-catenin pathways.

Impact of IL-2 and IL-2R SNPs on Proliferation and Tumor-killing Activity of Lymphokine-Activated Killer Cells from Healthy Chinese Blood Donors

  • Li, Yan;Meng, Fan-Dong;Tian, Xin;Sui, Cheng-Guang;Liu, Yun-Peng;Jiang, You-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7965-7970
    • /
    • 2014
  • One of the goals of tumor immunotherapy is to generate immune cells with potent anti-tumor activity through in vitro techniques using peripheral blood collected from patients. However, cancer patients generally have poor immunological function. Thus using patient T cells, which have reduced in vitro proliferative capabilities and less tumor cell killing activity to generate lymphokine-activated killer (LAK) cells, fails to achieve optimal clinical efficacy. Interleukin-2 (IL-2) is a potent activating cytokine for both T cells and natural killer cells. Thus, this study aimed to identify optimal donors for allogeneic LAK cell immunotherapy based on single nucleotide polymorphisms (SNP) in the IL-2 and IL-2R genes. IL-2 and IL-2R SNPs were analyzed using HRM-PCR. LAK cells were derived from peripheral blood mononuclear cells by culturing with IL-2. The frequency and tumor-killing activity of LAK cells in each group were analyzed by flow cytometry and tumor cell killing assays, respectively. Regarding polymorphisms at IL-2-330 (rs2069762) T/G, LAK cells from GG donors had significantly greater proliferation, tumor-killing activity, and IFN-${\gamma}$ production than LAK cells from TT donors (P<0.05). Regarding polymorphisms at IL-2R rs2104286 A/G, LAK cell proliferation and tumor cell killing were significantly greater in LAK cells from AA donors than GG donors (P<0.05). These data suggest that either IL-2-330(rs2069762)T/G GG donors or IL-2R rs2104286 A/G AA donors are excellent candidates for allogeneic LAK cell immunotherapy.

Up-regulation of Galectin-3 in HIV-1 tat-transfected Cells

  • Yu Hak Sun;Kim KoanHoi
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.186-191
    • /
    • 2005
  • Previous studies have demonstrated that expression of galectin-3, a member of family of beta-galactoside-binding animal lectin, is associated with pathological conditions including cancer, atherosclerosis, and viral infection. An increase of this lectin has been observed after infection by Kirsten murine sarcoma, human T lymphotropic virus-l (HTLV-l), and human immunodeficiency virus-l (HIV-l). Viral transactivation protein Tax of HTLV-l mediates the increase in the lectin. In case of HIV-1, there are evidences that Tat would be related with increase in galectin-3. We investigated whether Tat directly induced galectin-3 expression in cells. We found that HIV-l tat gene activated galectin-3 promoter in RAW264.7 cells. To demonstrate direct induction of galectin-3 by HIV-l tat, we transfected the tat into a rabbit smooth muscle cell line (Rb1) and obtained RblTatCl-2, a clone of cell stably transfected with tat gene. The Rb1TatCl-2 cells exhibited activation of LTR promoter and up-regulation of galectin-3 transcript as well as protein. Our results indicate that HIV-l tat alone is sufficient to induce the expression of galectin-3. The Rb1TatCl-2 cells could be valuable for study of the effect of HIV-1 tat on expression of cellular genes.

Inotodiol Inhabits Proliferation and Induces Apoptosis through Modulating Expression of cyclinE, p27, bcl-2, and bax in Human Cervical Cancer HeLa Cells

  • Zhao, Li-Wei;Zhong, Xiu-Hong;Yang, Shu-Yan;Zhang, Yi-Zhong;Yang, Ning-Jiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3195-3199
    • /
    • 2014
  • Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, p<0.01). A sub-$G_1$ peak (apoptotic cells) of HeLa cells was detected after treatment and the apoptosis rate with the concentration and longer incubation time (r=1.0, p<0.01), while the percentage of cells in S phase and $G_2$/M phase decreased significantly. Immunocytochemistry assay showed that the expression of cyclin E and bcl-2 in the treated cells significantly decreased, while the expression of p27 and bax obviously increased, compared with the control group (p<0.05). The results of our research indicate that inotodiol isolated from Inonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer.

Effects of Water Extract from fermented Chaga Mushroom(Inonotus obliquus) on the Proliferation of Human Cancer Cell Lines. (발효 차가버섯 추출물이 인체 종양세포주 증식에 미치는 영향)

  • Cha, Jae-Young;Park, Sang-Hyun;Heo, Jin-Sun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.671-677
    • /
    • 2007
  • This study was performed to investigate the effect of the water-extract from non-fermented or fermented Chaga mushrooms (Inonotus obliquus) on the proliferation and apoptosis of the NIH3T3 mouse normal fibroblast cells and various human cancer cell lines including HCT-15 human colon carcinoma, AGS human gastric carcinoma, MCF-7 human breast adenocarcinoma, Hep3B human hepatocellular carcinoma and HeLa human cervical carcinoma using MTT(3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyl tetrazolium bromide) assay and DNA fragmentation. In an anti-cancer test using various human cancer cells, fermented Chaga mushroom extract showed higher antiproliferating effect than that of non-fermented Chaga mushroom extract. Mouse normal NIH3T3 cells were exhibited 80% above survival under fermented or non-fermented Chngn mushroom extract of various concentrations(0, 0.5 and 1 mg/ml). Fermented Chaga mushroom extract significantly inhibited cell growth on HCT-15 cells in a dose-dependent manner. HCT-15 cells treated with non-fermented or fermented Chaga mushrooms extract produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. These results suggest that fermented Chaga mushroom extract suppresses growth of HCT-15 human colon carcinoma cells through apoptosis.

Actin Dysfunction Induces Cell Cycle Delay at G2/M with Sustained ERK and RSK Activation in IMR-90 Normal Human Fibroblasts

  • Shrestha, Deepmala;Choi, Daeun;Song, Kiwon
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.436-443
    • /
    • 2018
  • The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was overexpressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.

Myxochelin A, a cytotoxic antibiotic from the myxobacterium Angiococcus disciformis

  • Ahn Jong-Woong;Lee Chong-Ock;Baek Seung-Hwa
    • Advances in Traditional Medicine
    • /
    • v.2 no.1
    • /
    • pp.64-67
    • /
    • 2002
  • In the course of screening for new anticancer antibiotics from myxobacteria, strain JW357 was found to produce an antibiotic that was active against several human cancer cell lines. This strain was identified as Angiacaccus disciformis by morphological and cultural characteristics. The antibiotic produced was identified as myxochelin A. It demonstrated significant cytotoxicity against certain human cancer cells with $IC_{50}$ values ranging 1.15 to $2.36{\mu}g/ml$. Myxochelin A was interestingly as active against multidrug-resistant CL02 cells as against the sensitive parental cells (HCT15).