• Title/Summary/Keyword: 2-layer asphalt

Search Result 72, Processing Time 0.027 seconds

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

Stress Analysis in Waterproof Layer on Steel Bridge Deck Pavement Using Finite Element Analysis (유한요소해석을 이용한 교면포장의 방수층에서의 응력해석)

  • Woo, Young-Jin;Lee, Hyun-Jong;Park, Hee-Mun;Choi, Ji-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • The behavior of pavement and waterproofing layer on the steel bridge deck system under traffic loading was analyzed using a finite element method in this paper. In the finite element analysis, the othotropic steel bridge deck is represented by equivalent plate using solid element instead of shell element and the interface is assumed perfect bonding state. The effects of several parameters such as thickness of deck, Young's modulus of deck, thickness of pavement, different braking loading, and temperature on the stresses and strain in the interface are investigated for bridge deck pavement. The shear stress of waterproof layer increases with decrease of bridge deck thickness and stiffness. The change of shear stress is negligible when the bridge deck thictaess is greater than 150mm and stiffness is greater than $2{\times}10^{5}MPa$. As the pavement thickness and temperature decrease, the shear stress in the waterproof layer tends to be increased. The tensile strain at the bottom asphalt layer decreases as the temperature and thickness increase.

  • PDF

Development of Moisture Loss Index Based on Field Moisture Measurement using Portable Time Domain Reflectometer (TDR) for Cold In-place Recycled Pavements (휴대용 TDR 함수량계로 측정한 현장 함수비를 이용한 현장 상온 재활용 아스팔트 포장의 수분 감소계수 개발)

  • Kim, Yong-Joo;Lee, Ho-Sin David;Im, Soo-Hyok
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.

Structural assessment of Anti-Freezing Layer with use of Falling Weight Deflectormeter Deflection (Falling Weight Deflectormeter를 이용한 동상방지층의 구조적 특성 분석)

  • Lee, Moon-Sup;Kim, Boo-Il;Jeon, Sung-Il;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • Until now, the thickness design of anti-freezing layer has been empirically conducted using the frost depth determined from the freezing index. This approach cannot consider the structural properties of anti-freezing layer, which can cause the over-design of pavement structure. This paper presents results of structural evaluation of anti-freezing layer using the Falling Weight Deflectormeter (FWD) deflections. The FWD testing was directly conducted on top of the subbase layer located at the embankment, cutting, and boundary area of each section. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer. The deflection reduction rates are 15~55% in the embankment, 11~64% in the cutting, and 2~38% in the boundary, respectively. It was also found that the use of antifree zing layer enables to reduce the Surface Curvature Index (SCI) values up to 24 percent. Fatigue lives show that pavement structure with antifreezing layer are about two times higher than the those without anti-freezing layer. This fact indicates that the anti-freezing layer should be considered as a structural layer in the asphalt pavement system.

Evaluation of Flexible Pavement Layer Moduli Using the Depth Deflectometer and Flexible Pavement Behavior under Various Vehicle Speeds (아스팔트 콘크리트 포장구조체의 내부처짐에 의한 물성추정과 주행속도에 따른 거동분석)

  • Choi, Jun-Seong;Kin, Soo-Il;Yoo, Ji-hyung
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.135-145
    • /
    • 2000
  • A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.

  • PDF

Evaluation on the Mechanical Properties of Multi-Functional Asphalt Pavements for Surface Course (다기능 표층용 아스팔트 혼합물의 역학적 특성 평가)

  • Lee, Kwan-Ho;Ham, Sang-Min;Kim, Seong-Kyum;Lee, Byung-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.292-295
    • /
    • 2011
  • 본 논문에서는 배수성(저소음)포장을 포함하는 2-Layer 아스팔트 포장의 상부층과 하부층의 역학적인 특성을 평가하는데 목적이 있다. 연구 방법으로는 슈퍼페이브 배합설계로 2-Layer 아스팔트 포장의 상 하부층 시편을 제작하였으며, 시편 상부층의 최대공칭치수는 4.75mm이고 하부층의 최대공칭치수는 13mm이다. 이 시편에 대한 기본 물성 시험 실시 후 마샬 안정도 시험에 대한 안정도와 흐름값을 평가하였다. 그리고 상부층과 하부층의 자유단 공진주 시험을 통해 탄성계수(E)를 측정하였고, 비파괴 시험법인 슈미트해머(Schmidt hammer)를 이용해 반발경도를 측정한 후 강도를 추정하였다. 또한 일축압축시험으로 측정된 압축강도로 탄성계수($E_{50}$)를 계산하였다. 마지막으로 각각의 역학적 시험을 통해 얻어진 결과값으로 강도(qu)와 탄성계수 ($E_{50}$)의 상관관계와 추정식으로 구한 강도와 일축압축강도 시험으로 얻어진 강도와의 상관관계를 분석하였고, 자유단 공진주 시험의 탄성계수(E)값과 일축압축시험의 결과로 얻어진 탄성계수($E_{50}$)의 상관관계를 분석하였다.

  • PDF

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.

Analysis of Characteristics in Low-shrinkage Cement Treated Base (저수축 시멘트 안정처리 기층의 특성분석)

  • Lee, Seung-Woo;Jeon, Beom-Jun;Kim, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-70
    • /
    • 2004
  • Cement treated Soil has superior characteristics as pavement-base including strength, curability, hardness, freezing resistance. However drying shrinkage of Cement treated base has been indicated as disadvantage, since reflection crack of surface layer is induced from drying shrinkage of cement treated base. This study propriety about low-shrinkage cement treated base that can control shrinkage of cement and control reflection crack at asphalt overlay & concrete slab.

  • PDF

Development of Model for Structural Evaluation of Anti-Freezing Layer (동상방지층의 구조적 평가를 위한 모형 개발)

  • Lee, Moon-Sup;Heo, Tae-Young;Park, Hee-Mun;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • The thickness of anti-freezing layer has been empirically determined using the frost depth obtained from the freezing index and has not been generally considered as a structural layer in pavement design procedure. In fact, the anti-freezing layer makes a role in structural layer and enables to reduce the total thickness of pavement system. The objective of this study is to develop the statistical regression model for evaluating the structural capacity of anti-freezing layer using Falling Weight Deflectormeter(FWD) test data in asphalt pavements. The FWD testing was conducted at the embankment, cutting, and boundary area of various test sections to estimate the structural capacity of anti-freezing layer in different foundation condition. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer ranging from 0.4 to 82.6%. To determine the variables of statistical model, the correlation study has been conducted between various FWD deflection indexes and the anti-freezing layer thickness. It is found that the ${\Delta}BDI$(%)(${\Delta}Basin$ Damage Index(%)) is highly correlated with anti-freezing layer thickness. The ${\Delta}BDI$(%) model were developed for evaluating structural capacity of anti-freezing layer using linear mixed-effect models.