• 제목/요약/키워드: 2-edge connected graphs

검색결과 19건 처리시간 0.027초

ON TWO GRAPH PARTITIONING QUESTIONS

  • Rho, Yoo-Mi
    • 대한수학회지
    • /
    • 제42권4호
    • /
    • pp.847-856
    • /
    • 2005
  • M. Junger, G. Reinelt, and W. R. Pulleyblank asked the following questions ([2]). (1) Is it true that every simple planar 2-edge connected bipartite graph has a 3-partition in which each component consists of the edge set of a simple path? (2) Does every simple planar 2-edge connected graph have a 3-partition in which every component consists of the edge set of simple paths and triangles? The purpose of this paper is to provide a positive answer to the second question for simple outerplanar 2-vertex connected graphs and a positive answer to the first question for simple planar 2-edge connected bipartite graphs one set of whose bipartition has at most 4 vertices.

ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH

  • Lu, Zai Ping;Song, Ning
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.763-787
    • /
    • 2017
  • A graph is called 1-planar if it can be drawn in the Euclidean plane ${\mathbb{R}}^2$ such that each edge is crossed by at most one other edge. The weight of an edge is the sum of degrees of two ends. It is known that every planar graph of minimum degree ${\delta}{\geq}3$ has an edge with weight at most 13. In the present paper, we show the existence of edges with weight at most 25 in 3-connected 1-planar graphs.

LINEAR EDGE GEODETIC GRAPHS

  • Santhakumaran, A.P.;Jebaraj, T.;Ullas Chandran, S.V.
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.871-882
    • /
    • 2012
  • For a connected graph G of order $n$, an ordered set $S=\{u_1,u_2,{\cdots},u_k\}$ of vertices in G is a linear edge geodetic set of G if for each edge $e=xy$ in G, there exists an index $i$, $1{\leq}i$ < $k$ such that e lie on a $u_i-u_{i+1}$ geodesic in G, and a linear edge geodetic set of minimum cardinality is the linear edge geodetic number $leg(G)$ of G. A graph G is called a linear edge geodetic graph if it has a linear edge geodetic set. The linear edge geodetic numbers of certain standard graphs are obtained. Let $g_l(G)$ and $eg(G)$ denote the linear geodetic number and the edge geodetic number, respectively of a graph G. For positive integers $r$, $d$ and $k{\geq}2$ with $r$ < $d{\leq}2r$, there exists a connected linear edge geodetic graph with rad $G=r$, diam $G=d$, and $g_l(G)=leg(G)=k$. It is shown that for each pair $a$, $b$ of integers with $3{\leq}a{\leq}b$, there is a connected linear edge geodetic graph G with $eg(G)=a$ and $leg(G)=b$.

The Gallai and Anti-Gallai Graphs of Strongly Regular Graphs

  • Jeepamol J. Palathingal;Aparna Lakshmanan S.;Greg Markowsky
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.171-184
    • /
    • 2024
  • In this paper, we show that if G is strongly regular then the Gallai graph Γ(G) and the anti-Gallai graph ∆(G) of G are edge-regular. We also identify conditions under which the Gallai and anti-Gallai graphs are themselves strongly regular, as well as conditions under which they are 2-connected. We include also a number of concrete examples and a discussion of spectral properties of the Gallai and anti-Gallai graphs.

방향성 통신망의 신뢰도 계정에 관한 에지제거 알고리즘 (An Edge Removal Algorithm for the Reliability Evaluation of Directed Communication Networks)

  • 임윤구;오영환
    • 한국통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.63-73
    • /
    • 1988
  • 본 논문에서는 확률적 방향성 그래프에서 시점(source node)과 종점(terminal node) 간의 통신할 수 있는 확률인 단점간 신뢰도를 계정하는 알고리즘을 제시하였다. Satyanarayana의 factoring $theorem^{(7)}$을 이용하여 확률적 방향성 그래프에서 시점에 연결되어 있는 에지(edge)를 개방(open)과 단락(short)상태로 감축하여 원래의 그래프를 2개의 감축된 그래프로 분리한 후, 본 논문이 제시한 에지제거법과 일반적인 직, 병렬 감축법을 분리된 그래프에 적용한다. 이 에지 감축(edge reduction)을 source node와 terminal node가 단일 에지로 연결될때까지 반복한다. 또한 복잡하고 규모가 큰 망에 대한 단점간 신뢰도를 계정하기 위해서 전산기 프로그램을 제시하였다.

  • PDF

DISTINGUISHING NUMBER AND DISTINGUISHING INDEX OF STRONG PRODUCT OF TWO GRAPHS

  • Alikhani, Saeid;Soltani, Samaneh
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.645-651
    • /
    • 2020
  • The distinguishing number (index) D(G) (D'(G)) of a graph G is the least integer d such that G has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. The strong product G ☒ H of two graphs G and H is the graph with vertex set V (G) × V (H) and edge set {{(x1, x2),(y1, y2)}|xiyi ∈ E(Gi) or xi = yi for each 1 ≤ i ≤ 2.}. In this paper we study the distinguishing number and the distinguishing index of strong product of two graphs. We prove that for every k ≥ 2, the k-th strong power of a connected S-thin graph G has distinguishing index equal two.

L(4, 3, 2, 1)-PATH COLORING OF CERTAIN CLASSES OF GRAPHS

  • DHANYASHREE;K.N. MEERA
    • Journal of applied mathematics & informatics
    • /
    • 제41권3호
    • /
    • pp.511-524
    • /
    • 2023
  • An L(p1, p2, p3, . . . , pm)-labeling of a graph G is an assignment of non-negative integers, called as labels, to the vertices such that the vertices at distance i should have at least pi as their label difference. If p1 = 4, p2 = 3, p3 = 2, p4 = 1, then it is called a L(4, 3, 2, 1)-labeling which is widely studied in the literature. A L(4, 3, 2, 1)-path coloring of graphs, is a labeling g : V (G) → Z+ such that there exists at least one path P between every pair of vertices in which the labeling restricted to this path is a L(4, 3, 2, 1)-labeling. This concept was defined and results for some simple graphs were obtained by the same authors in an earlier article. In this article, we study the concept of L(4, 3, 2, 1)-path coloring for complete bipartite graphs, 2-edge connected split graph, Cartesian product and join of two graphs and prove an existence theorem for the same.

THE SPECTRAL DETERMINATIONS OF THE JOIN OF TWO FRIENDSHIP GRAPHS

  • Abdian, Ali Zeydi;Moez, Amirhossein Morovati
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.67-87
    • /
    • 2019
  • The main aim of this study is to characterize new classes of multicone graphs which are determined by their adjacency spectra, their Laplacian spectra, their complement with respect to signless Laplacian spectra and their complement with respect to their adjacency spectra. A multicone graph is defined to be the join of a clique and a regular graph. If n is a positive integer, a friendship graph $F_n$ consists of n edge-disjoint triangles that all of them meet in one vertex. It is proved that any connected graph cospectral to a multicone graph $F_n{\nabla}F_n=K_2{\nabla}nK_2{\nabla}nK_2$ is determined by its adjacency spectra as well as its Laplacian spectra. In addition, we show that if $n{\neq}2$, the complement of these graphs are determined by their adjacency spectra. At the end of the paper, it is proved that multicone graphs $F_n{\nabla}F_n=K_2{\nabla}nK_2{\nabla}nK_2$ are determined by their signless Laplacian spectra and also we prove that any graph cospectral to one of multicone graphs $F_n{\nabla}F_n$ is perfect.

CERTAIN GENERALIZED THORN GRAPHS AND THEIR WIENER INDICES

  • Kathiresan, KM.;Parameswaran, C.
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.793-807
    • /
    • 2012
  • If G is any connected graph of order p; then the thorn graph $G_p^*$ with code ($n_1$, $n_2$, ${\cdots}$, $n_p$) is obtained by adding $n_i$ pendent vertices to each $i^{th}$ vertex of G. By treating the pendent edge of a thorn graph as $P_2$, $K_2$, $K_{1,1}$, $K_1{\circ}K_1$ or $P_1{\circ}K_1$, we generalize a thorn graph by replacing $P_2$ by $P_m$, $K_2$ by $K_m$, $K_{1,1}$ by $K_{m,n}$, $K_1{\circ}K_1$ by $K_m{\circ}K_1$ and $P_1{\circ}K_1$ by $P_m{\circ}K_1$ and their respective generalized thorn graphs are denoted by $G_P$, $G_K$, $G_B$, $G_{KK}$ and $G_{PK}$ respectively. Many chemical compounds can be treated as $G_P$, $G_K$, $G_B$, $G_{KK}$ and $G_{PK}$ of some graphs in graph theory. In this paper, we obtain the bounds of the wiener index for these generalization of thorn graphs.