• Title/Summary/Keyword: 2-dimensional visualization

Search Result 328, Processing Time 0.03 seconds

On the Visualization of Three-Dimensional Vortical Structures in the Wake behind a Road Vehicle by PIV Measurements (PIV 측정을 통한 자동차 후류 3차원 와구조의 정량적 해석)

  • Lee Sukjong;Sung Jaeyong;Kim Jinseok;Kim Sungcho;Kim Jeongsoo;Choi Jongwook
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.58-63
    • /
    • 2005
  • Three-dimensional vortical structures in the wake behind a road vehicle has been visualized with the help of two-dimensional PIV measurement data. A three-dimensional velocity field has been reconstructed from several sectional measurement data in the x-y, y-z and z-x planes. Isovorticity surface observed by stacking only the sectional data in each plane, does not show the vortical structures within the recirculation region but represents only the strong shear flows. Thus, in the present study, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, a $\lambda_{2}$-definition which captures the local pressure minimum or vortex core, is applied to visualize the vortices in the recirculation region. The final results represent a successful configuration for the three-dimensional vortices.

  • PDF

Medical Contents Visualization System for Smart Device (스마트 기기용 의료 콘텐츠를 위한 영상 가시화 시스템)

  • Kwon, Koojoo;Kang, Dong-Su;Kho, Youngihn;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1264-1272
    • /
    • 2012
  • Three-dimensional volume rendering method which shows the inside of human body is widely used in medical imaging area. Existing medical imaging system using a volume rendering method already has provided a variety of three-dimensional results. Recently existing results in the medical imaging among physicians and patients to facilitate communication have been studied since smart device which has advantage of portability applied in the medical imaging. In this paper, we propose 3D volume visualization system for a relatively low spec portable smart devices by using 2D textures and we also implements 2D diagnostic images of portable medical imaging visualization system.

A Visualization Scheme with a Calendar Heat Map for Abnormal Pattern Analysis in the Manufacturing Process

  • Chankhihort, Doung;Lim, Byung-Muk;Lee, Gyu-Jung;Choi, Sungsu;Kwon, Sun-Ock;Lee, Sang-Hyun;Kang, Jeong-Tae;Nasridinov, Aziz;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Abnormal data in the manufacturing process makes it difficult to find useful information that can be applied in data management for the manufacturing industry. It causes various problems in the daily process of production. An issue from the abnormal data can be handled by our method that uses big data and visualization. Visualization is a new technology that transforms data representation into a two-dimensional representation. Nowadays, many newly developed technologies provide data analysis, algorithm, optimization, and high efficiency, and they meet user requirements. We propose combined production of the data visualization approach that uses integrative visualization of sources of abnormal pattern analysis results. The perceived idea of the proposed approach can solve the problem as it also works for big data. It can also improve the performance and understanding by using visualization and solving issues that occur in the manufacturing process with a calendar heat map.

Visualization of Rotational Flow for Chamber Size of a 2×2 Microfluidic Centrifuge (마이크로 유체 원심분리기의 챔버 크기에 따른 회전 유동 가시화)

  • Jeon, Hyeong Jin;Kwon, Bong Hyun;Kim, Dae Il;Go, Jeung Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.25-29
    • /
    • 2012
  • This paper introduces a new parameter to design the $2{\times}2$ microfluidic centrifuge with single flow rotation positioned at the center of microchamber. The dimensional centrifugal acceleration momentum flux which is defined as the interfacial momentum flux divided by distance from the center of the chamber explains the flow rotation and its threshold provides a reference to expect single flow rotation. Through the numerical and experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a channel width of $50{\mu}m$ and chamber width of $250{\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a channel width of $100{\mu}m$ and chamber width of $500{\mu}m$, single flow rotation did not appear. The numerical analysis showed that the threshold centrifugal acceleration momentum flux to obtain single flow rotation was $3500kg/m{\cdot}s^2$.

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

The Effects of Cooperative Learning on Children's Understanding of Geometry (협동학습활동이 유아 기하 학습에 미치는 영향)

  • Kwon, Young-Re;Lee, Kyung-Jin;Shin, Ok-Ja
    • Korean Journal of Child Studies
    • /
    • v.32 no.2
    • /
    • pp.71-85
    • /
    • 2011
  • This study was carried out in order to better understand how cooperative learning effects the geometric understanding of young children. The geometry tasks used in the study included the geometric relationship between two dimensional shapes and three dimensional shapes, coordination, symmetry and transformation visualization and spacial reasoning. The subjects were composed of children aged five years and were taken from two kindergartens in a relatively new city close to Seoul. The experimental group of children the comparative learning in geometry. The comparative group of children were enrolled in a kindergarten that uses an the intergrated curriculum. The results indicated that cooperative learning impacted positively on the children's understanding of geometry. The specific results are as follows : The scores that the experimental acquired were higher in terms of p < .001 level. than the scores of the comparative group studying the geometric relationships between two dimensional shapes and three dimensional shapes, coordination, symmetry and transformation visualization & spacial reasoning.

Three dimensional visualization of seafloor topography for the application of integrated navigation system (통합항법시스템에 적용하기 위한 3차원 해저지형의 시각화)

  • Bae, Mun-Ki;Shin, Hyeong-Il;Lee, Dae-Jae;Kang, Il-Kwon;Lee, Yoo-Won;Kim, Kwang-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • The 3D visualization of seafloor topography(ST) was realized to discuss the effective use by the 3D visualization of ST on the integrated navigation system(INS) for fishing boat. The software was to actually display the 3D visualization of ST using triangular irregular network, helical hyperspatial codes and stereo projection. The INS for fishing boat which applied the 3D visualization of ST will be utilized for safety voyage and the effective fishing work on the fishing ground.

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

  • Madusanka, Nuwan;Zaben, Naim Al;Shidaifat, Alaaddin Al;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.